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ABSTRACT

In this paper, we develop an algorithm to compute the
fractional Mellin transform (FrMT). The connection between
the FrMT and the fractional Fourier transform (FrFT) is
formed by the logarithmic warping operator Uy, Following
this connection, we first develop an algorithm to perform the
logarithmic warping operation which is combined together
with a discrete FrFT algorithm to compute the FrMT.
Performance of the developed algorithm is demonstrated
through simulations.

1. INTRODUCTION

The fractional Mellin transform (FrMT) is a generalization of
the scale covariant transform [1] and the Mellin transform on
the scale-warped time-frequency plane [2]. The definition of
the FrMT was inspired by the previously defined fractional
Fourier transform (FrFT), which is a generalization of the
identity and the classical Fourier transforms on the time-
frequency plane [3]. Using the unitary equivalence concept of
Baraniuk and Jones [4], a theoretical definition of the FrMT
was given in [2]. A similar definition appeared in [5].

In this work, we develop a discrete-time algorithm of the
FrMT proposed in [2]. The FrMT of a time domain signal s(t)
is derived [2] as in (1) at the bottom of the page. In (1), M
denotes the FrMT operator and the symbol  is an angle

parameter. The FrMT is well suited to analyze signals whose
frequency varies hyperbolically with time. Examining the
kernel of the transformation in (1), the instantaneous
frequency of these signals can be expressed as

fi= Beot 410 )

t sin

In (2), m and are the fractional scale and angle

parameters, respectively, that determine the shape of the
instantaneous frequency curves of the signal. The localization
of these signals in the time-frequency plane are illustrated in

Fig. 1. In Fig 1(a), M takes on the values 11, < i, <y <
/2. In Fig 1(b),
1= /2

m, =0< .. < m while is fixed as
assumes the values ;< < 5<0< 4< 3< <
as M is kept constant at 0.
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Fig. 1 Instantaneous frequency curves of the signals suited to
analysis with the FrMT. In (a) 7 is varied while is kept

constant whereas in (b)  is varied while 7 is fixed.

The hyperbolic nature of the instantaneous frequency
given in (2) suggests the possibility of using the FtMT in the
analysis of mammalian echolocation signals and the
hyperbolic frequency modulations propagating through a
dispersive underwater channel.

When =0, the FrMT reduces to the scale covariant

transform in [1]. Similarly, for = /2, the FrMT simplifies
to the classical Mellin transform. Although the FrMT
formulation in (1) appears complicated at first glance, it has
been shown in [2] that this formulation can alternatively be
expressed as
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(M s5)(m)=(F U,,s)(m). (3)

In (3), F denotes the FrFT operator [3] defined at the angle
parameter . U, is called the logarithmic warping operator

and is defined [4] as
(Uyp8)(0) = "2s(e"). 4)

This operator takes signals with support regions in the
positive time axis and stretches their support region onto the
whole real time axis. Note that the logarithmic warping
operator changes not only the argument but also the amplitude
of the signal in a time dependent manner.

According to (3), computing the FtMT of a continuous
time signal s(t) is equivalent to first applying the logarithmic
warping U,, and then computing the FrFT of the

logarithmically warped signal. Our discrete FrMT algorithm is
based on the equivalence relation in (3). Since there already
exists algorithms to implement the FrFT [6] - [8],
development of a logarithmic warping algorithm to implement
U,, is sufficient to calculate the FrMT.

The concept of scale and scale related transforms have
previously been addressed in several papers in the literature.
A discrete version of the classical Mellin transform was
developed by Bertrand et. al. [9]. Cohen defined and
established the scale transform that can be considered a
special case of the classical Mellin transform [10]. Later,
Zalubas and Williams proposed [11] a discrete
implementation of Cohen’s scale transform. However, to our
knowledge, an algorithm for the digital computation of the
fractional Mellin transform (FrMT) has not been proposed.

2. DEVELOPMENT OF THE FrMT ALGORITHM
2.1 Logarithmic Warping Algorithm

In this section we discuss the algorithmic implementation of
the logarithmic warping operator, U,,> given in (4). Note that

U,, has a time dependent formula. Hence, to be able to

calculate the logarithmically warped version of a signal s(t)
one needs complete knowledge of the time support of s(t). It
is assumed that the signal is sampled at a rate of f. =2N

where N is the number of samples in the analyzed signal. This
is dictated by the constraints of the particular FrFT algorithm
[6] that we employ in our FtMT algorithm. We first construct
the vector of sampling instances t[n] of the sampled analyzed
signal s[n]. For each instance t[i] in t[n], the warped value
s[e"™] is calculated by interpolation. The warping operation

for each sample is completed by a final multiplication of
s[e'"] by € as indicated in (4).
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Fig. 2 Logarithmic warping of a square wave.

Performance of the warping algorithm is demonstrated in Fig.
2 where the solid line represents the theoretical logarithmic
warping of the square wave represented by the dashed line.
The data points shown by the circles are the sample values
obtained by our logarithmic warping algorithm described
above. For this particular example, we employed linear
interpolation; however, depending on the type of the signal to
be warped different interpolation schemes such as cubic spline
can be utilized. In the simulations that follow, we employed
cubic spline interpolation.

One unavoidable shortcoming of the proposed
logarithmic warping algorithm is that it requires a large
number of samples of the original analyzed signal to produce
a warped signal with reasonable number of samples. For an
unwarped signal of N samples the algorithm can only produce
21n2(%) samples of the warped signal. This is because of the

exponential function that forms the argument of the warped
signal in (4). In Fig. 2, we used an original signal with 32768
samples to produce a warped signal of length 138.

2.2 Implementation of the FrMT Algorithm

Combining the logarithmic warping algorithm with the
discrete-time FrFT algorithm in [6] as in (3) provides a
practical way to compute the FrMT of time domain signals.
Using the inverse logarithmic warping operator, Ull , together

with (3), we can write
(M U,,,)(m) = (F U,,,U,,,$)(m) = (F s)(m). (5

In(5), Uy ! is given as

(U ls)(@6) Js(no). (6)

We use the equality in (5) to test the validity of our FrtMT
algorithm. As an example, we use an inverse logarithmically
warped complex exponential signal,

(U]olgs)(f) = [U]OIg {612 f\)t}](t) — %eﬂ f(,lnt' (7)



We can easily write the theoretical FrMT of the inverse
logarithmically warped complex exponential in (7) using the
relationship in (5) along with FrFT tables [3]

[M U,Ls10m) = (F s)(m)=fi+jan e/ i <2 nhose
®

which is plotted in Fig. 3 using solid line. We used fy=1 and

= /12 radians. We also computed the FrMT of (7) by first
applying the logarithmic warping algorithm described in
Section 2.1 followed by the discrete-time FrFT algorithm [6]
as indicated in the middle part of (5). The data points shown
by circles in Fig. 3 are the result of our discrete FrMT
algorithm. Theoretical and algorithmic results match to a great
degree. Small deviations near the end points could be
attributed to the approximate nature of the FrFT algorithm [6].

Fig. 3 Comparison of the theoretical FrMT of (7) (solid) with
the discrete FrMT using our algorithm (circles).

2.3 A Signal Separation Application Using the FrMT

To demonstrate the utility of our algorithm, we include a
signal separation application involving the FrMT. Consider
the signal

2 | 2
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which is formed by adding inverse logarithmically warped
Gaussian and chirp signals. The two warped signals are
superimposed in such a way that an easy separation of them in
time domain is not feasible.

Using our discrete FrMT algorithm we calculated the
FrMT of the signal in (9) assigning parameter values of

= 1and f,=6- The angle value of the FrMT is taken as
=atan( )+ /2. Notice that the angle parameter is matched
with the sweep rate parameter, , of the warped chirp signal.

The magnitude of the FrMT signal is plotted in Fig. 4. It can
be observed that the inverse logarithmically warped chirp
signal is localized as an impulse, thanks to the transform angle

matching the sweep rate of the chirp signal. The Gaussian
signal can easily be separated by applying a simple
multiplicative mask of width 2 centered around the origin of
the fractional scale domain. This masking operation
effectively zeroes out the impulse due to the warped chirp
signal that we want to separate from the warped Gaussian. To
go back to time domain, the inverse FtMT of the masked
Gaussian signal is computed using the relationship

M) '=(F U,,) '=U,F (10)

log
where we used the inverse property of the FrFT given as [3]

F)'=F (11)

Fig. 4 FrMT of s(t) in (9) computed at the matching angle
value =atan( )+ /2.

According to (10), the inverse FrMT corresponds to first
computing the FrFT at angle — and then applying the inverse
logarithmic warping operator U !'. The inverse logarithmic

warping algorithm is implemented using interpolation
analogously to its forward version. The recovered time
domain signal after computing the inverse FrMT is plotted
using solid line in Fig. 5. The dashed line shows the original
warped Gaussian signal in (9).

It can be seen that the original and recovered signals
agree to a great degree. This signal separation experiment can
also be performed in a noisy environment successfully.

2.4 An Example of FrMT versus FrFT

As a last demonstration, we compute and compare the FrMT
and FrFT of a rectangular pulse signal as shown in Fig. 6. In
Fig. 6(a) through Fig. 6(d), the FrFT of the rectangular pulse
is illustrated on the top subplot while the FrMT is illustrated
on the bottom. Fig. 6(a) through Fig. 6(d) depict the
magnitude parts of both transforms computed at =0, /6, /3,
and /2 radians, respectively.
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Fig. 5 Comparison of the recovered warped Gaussian (solid)

with the original warped Gaussian (dashed).

Notice that the bottom subplot of Fig. 6(a) corresponds to the
logarithmically warped rectangular pulse. As the transform
angle increases towards /2, both transforms move towards
the origin while the transform magnitudes continuously evolve
into sinc functions. We would like to stress that the subplots
in Fig. 6(d) correspond to the classical Fourier transforms (
= /2) of the signals in the respective subplots of Fig. 6(a).
Due to the symmetry property of the Fourier transform, both
transforms in Fig. 6(d) are centered at the origin.

MATLAB scripts of all the simulations can be obtained
from http://www.eee.deu.edu.tr/~biner/frmt/frmt.zip.

3. CONCLUSION

We proposed a discrete implementation of the FrMT based on
(3). For that purpose, we first developed a logarithmic
warping algorithm employing interpolation. The FrMT
algorithm was realized by first applying the logarithmic
warping on the analyzed signal and then computing the FrFT
of the warped signal using the discrete FrFT in [6]. The
performance of the algorithm was demonstrated through
simulations. Our FrMT algorithm works quite well, as
indicated in the examples. However, it requires a large
number of samples of the analyzed signal, as dictated by the
restrictions of the digital FrFT algorithm, to produce a
reasonable number of samples of the FrMT.
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