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ABSTRACT 

The purpose of this study is to investigate the effects of different 
forms of between-class scatter matrices on multi-class problems.  
Two different between-class scatter matrices are defined in Fisher’s 
linear discriminant analysis (FLDA) and the classification rates 
better than that of classical FLDA are obtained for TI-digit database. 
In this study, the criteria that give separate subspaces for each class 
are also proposed. It is seen that considering only the within-class 
scatter  in the classification gives better results than that of consider-
ing both the within- and between-class scatters for  TI-digit data-
base. 

INTRODUCTION 

In the speech recognition, Hidden Markov Model (HMM), 
Neural Networks (NN) and subspace methods are widely 
used. One of the well known subspace methods is FLDA. 
FLDA is an important method for linear dimension reduction 
in statistical pattern classification and speech recognition 
with small and large vocabulary applications [1-5]. In com-
parison with HMM, FLDA uses more simple training tech-
niques and decision criterion. 
 
Loog and Umbach proposed a generalized version of FLDA 
which allows to deemphasize the contributions of classes 
which are far apart from each other [6]. This criterion also 
considers differences in class covariances, thus being an ex-
tension of FLDA towards heteroscedastic data [5,6].  
 
FLDA is also widely used together with other classification 
methods. For instance, it is used together with HMM in on-
line handwriting [7] and speech [8] recognition, and together 
with Maximum Likelihood in isolated word recognition [9].  
 
Raudys and Duin pointed out that the pseudo-Fisher linear 
classifier is the “diagonal” Fisher linear classifier in the sub-
space of the principal components corresponding to nonzero 
eigenvalues of the sample covariance matrix [10].The pseudo 
Fisher classifier plainly ignores the directions with zero eigen 
values. But Jing et al. [11] stated that according to Direct 
LDA’s theory, some of the eigenvectors of within-class scat-
ter matrix corresponding to the largest eigenvalues should be 
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discarded  and  the process should keep the remainders, espe-  
cially those eigenvectors corresponding to the zero eigenval-
ues. 
 

One of the disadvantages of the LDA is to give an inadequate 
hypothesis when the boundary between two classes is 
nonlinear [12].  Yang et al. [13] emphasized that Fisher crite-
rion is not an absolute criterion, and it should be associated 
with the statistical correlation together to assess the discrimi-
nation of a set of discriminant vectors. They stated that in 
order to obtain a set of most discriminatory discriminant vec-
tors, Fisher criterion should be associated with the orthogonal 
constraints which can make sure the resulting features to be 
uncorrelated.  
 

It is obvious that the scatter of the classes in any database 
affect the classification performance of subspace methods. 
Let us consider two classes having scatters as shown in Fig.1. 
In this case, the FLDA correctly classifies the feature vectors, 
but the Common Vector Approach (CVA) fails. However the 
scatter of classes given in Fig. 1 can not be encountered in 
speech database. For this reason, the aim of this paper is to 
improve the recognition rates of isolated words by consider-
ing within-class scatters together with between-class scatters 
defined in different forms. The experimental studies on TI-
digit database indicate that the recognition rates are increased 
when improved windowing method is applied and proposed 
subspace methods are used.  
 

 
Figure 1. 

 
 

2.  THEORY 
 

In this paper, the effects of different forms of between-class 
scatter matrices on the multi-class problems are investigated 
and new subspace methods are proposed.  
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2.1. The Study on the FLDA 
 
Fisher’s optimization criterion is one of the methods that 
consider both within- and between-class scatters. Fisher has 
used LDA in order to solve multi-class problems by maxi-
mizing the ratio of between-class scatter matrix to within-
class scatter matrix in low dimensional space [1,14]. 
  
Fisher’s criterion to be maximized is expressed as: 

    { }1T T
W B( ) ( )J W Tr W W W W−( ) = S S          (1) 

where wS  and BS are the within- and between-class scatter 

matrices respectively, and W represents the projection ma-
trix [1]. The dimension of the subspace obtained from the 
optimization criterion in Eq. (1) is one less than the number 
of classes. In this subspace, the recognition rates of the 
classes are not high.  This limitation is a result of the defini-
tion of the between-class scatter matrix. The previous studies 
which optimize the criterion in Eq. (1) can be summarized as 
follows: 
i) The condition of 0T

i t j ,   i jw S w = ∀ ≠  is used in-

stead  of  the  condition T
i j=0, w w  i j,∀ ≠  

1, 2i,j= ,...,d , [13].  Here, t w B= +S S S . 
ii) In  [14], the between-class scatter matrix is written in 
terms of the differences of averages of classes. 
iii) The discrimination of the between-class scatter matrix is 
increased by multiplying that matrix with a weight function 
which is defined by eigenvalues of the between-class scatter 
matrix [6].  

 
2.2. Finding a Unique Subspace by Minimizing     

1 T

T T
w BF W S W W W= Φ Criterion  

Let m represents the number of feature vectors of each class, 
n represents the number of elements in each feature vector 
and c

ia (i=1, 2,.., m) represents a feature vector. In this sec-

tion, the optimization criterion 1F  is defined to find a unique 

subspace that represents all classes. In this criterion, wS de-
notes Fisher’s total within-class scatter matrix. Total be- 
tween-class scatter matrix 

TBΦ  is defined in two different 
forms: 

 i)  
TBΦ  is defined in a form that the distance between     

average of each  class and the average of the rest of  classes 
is maximized: 

( )( )1

1
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where c
avea  and c

r,avea  represent the average of feature vec-
tors in class c and the average of feature vectors of the rest of 
classes  respectively. Since the determinant of 1

TBΦ is zero, 
the criterion to be maximized is defined as 

1
T

T T
B wW W W WΦ S . The eigenvectors associated 

with the largest eigenvalues of the 1 1
T

-
w BS Φ  will be used in 

the recognition process. 
I   ii)  As another approach, 

TBΦ is defined in a form that  the 
distance between each feature vector of any class and the 
average of the rest of classes is maximized: 

             ( )( )2
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In this approach, usually the determinant of 
T

2
BΦ is not zero. 

Therefore the minimization of 2
T

T T
w BW W W WS Φ cri-

terion and maximization of  2
T

T T
B wW W W WΦ S  crite-

rion give the same results. The eigenvectors associated with 

the smallest eigenvalues of the ( ) 12
T

-

B wSΦ  will be used in 

the recognition process.  
 
2.3. Finding Separate Subspaces for Each Class by 

Minimizing 2
T c T c

w BF W W W W= Φ Φ  Crite-

rion   
In this section, the optimization criterion 2F  is defined to 
find separate subspaces for each class. In this criterion, the 
within-class scatter matrix c

WΦ  is defined as: 

     ( )( )
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 and the between-class scatter matrix c
BΦ  is defined in two 

different forms:  
i) First of all,  the c

BΦ  is defined as: 
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 The eigenvectors associated with the smallest eigenvalues of 
the 1( )c - c

B wΦ Φ   will be used in the recognition process. 
I   ii) Secondly, the between-class scatter matrix is defined in a 

form that the distance between feature vectors of any class 
and the average of each of the other classes is maximized. 
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  The eigenvectors associated with the smallest eigenvalues of  
1( )

1

c - c
B wΦ Φ  will be used in the recognition process. 

 
                             3.  EXPERIMENTAL  STUDY 
 
In the experimental study, the TI-digit database is used. After 
end-point detection, the speech frames are pre-emphasized 
and two different windowing methods are applied: 



      i) Each repetition is divided into frames with 256 samples. 
After the Hamming window with 64 overlap is applied, 11 
root-melcep parameters are calculated. Then these parame-
ters are stacked in order to construct the feature vector for 
each repetition of each digit. After this process, the dimen-
sions of the feature vectors are extended to 407 (dimension 
of the longest vector in the training set) by padding random 
values. The scatter matrix for each digit turns out to be a 
407x407 matrix. For sufficient case (m>n) [15], the scatter 
matrix and its eigenvalues and eigenvectors are calculated by 
using the m=427 feature vectors in each class. The eigenvec-
tors corresponding to different number of the smallest eigen-
values (n-k+1)  are used in the recognition process.   

      ii) In the second windowing method, each repetition is 
divided into 8 frames. The Hamming window is applied to 
each frame. The overlap between the frames is set to ¼ of the 
number of samples in each frame.  33 root-melcep parame-
ters are calculated and stacked in order to construct the fea-
ture vector with the size of 330 for each repetition of each 
digit. This proposed method is called Variable Frame Length 
(VFL) method [16]. 
 
3.1. The study on FLDA 
The nonzero eigenvalues of 1-

w BS S are used to maximize the 
Fisher’s optimization criterion in Eq. (1). The decision crite-
rion is expressed as follows: 
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where fP  represents the projection matrix of all classes. If 

unknown feature vector xa  belongs to the class c, the dis-
tance should be minimum. The experimental studies can be 
summarized as follows:    
 
i) In the recognition process, when the feature vectors with 
the dimension of 407 are used, the recognition rates of 96.5% 
and 92.3% are obtained for the training and test sets respec-
tively. Besides this; when the optimizations defined in parts 
(i-iii) in the subsection 2.1 are applied to Fisher’s criterion, it 
is observed that the recognition rates are not increased [17].  
ii) A subspace from within-class scatter matrix wS  and an-

other subspace from between-class scatter matrix BS  are 
defined and the experimental studies are repeated using the 
feature vectors with the length of 330. The results obtained 
from wS , BS and their combination using the Borda Count 
method [18,19] are given in Table 1. 
 

Table 1. The recognition rates obtained from wS ,                                       

BS and Borda Count method.  
 Training Set (%) Test Set (%) 

wS  92.5 90.3 

BS  90.9 87.6 
Borda Count 96.5 95.1 

3.2. The Studies for the Criterion 1F  

In this part, if 2
TBΦ is considered as the between-class scatter 

matrix, the following decision criterion is used in the recog-
nition process.  
 

2

1
2

1
1

c
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c
x r,ave

( )
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( )≤ ≤

−
=

−c C

P a a

P a a
             (8) 

 
where 1P is the projection matrix of all classes. If 1

TBΦ  is 
considered as the between-class scatter matrix, only numera-
tor of Eq. (8) is used in the recognition process. The results 
obtained for two different between-class scatter matrices 
given in Eqs. (2) and (3) are given in Table 2. 

 
Table 2.  The recognition rates (%) for the criterion 1F . 

1 T

T T
w BF W S W W W= Φ  

1 1
T

-
w BS Φ  ( ) 12

T

-

B wSΦ  

Train Test Train Test 
97.6 95.9 97.92 95.82 

 
3.3. The Studies for the Criterion 2F  
 
In this part, the following decision criterion is used in the 
recognition process.  
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where 2
cP is the projection matrix of the class c. The results 

obtained for two different between-class scatter matrices 
given in Eqs. (5) and (6) are given in Table 3. 

 
Table 3.  The recognition rates (%) for the criterion 2F . 

2
T c T c

w BF W W W W= Φ Φ  

( ) 1c c
B w

−
Φ Φ  ( ) 1

1

c c
B w

−
Φ Φ  

Train Test Train Test 
96.16 88.91 100 86 

 
i) Instead of minimizing the ratio 2F  for each class, the results 

which are obtained from minimizing T c
wW WΦ for each 

class and maximizing T c
BW WΦ  for each class can be 

combined with the Borda Count method. The results ob-
tained from c

wΦ , c
BΦ and their combination using the Borda 

Count method are given in Table 4. 



Table 4. The recognition rates obtained from c
wΦ ,                                       

c
BΦ and Borda Count method.  

 Training Set (%) Test Set (%) 
c
wΦ  100 98.82 
c
BΦ  92.8 89.5 

Borda Count 98.3 97.4 
 
When the results obtained using the eigenvectors associated 
with the minimum eigenvalues of c

wΦ and the results ob-
tained using the eigenvectors associated with the maximum 
eigenvalues of 

1

c
BΦ are combined with the Borda Count 

method, the recognition rates of 98.32% for the training set 
and 97.36% for the test set are obtained. 

4.    CONCLUSION 

In the speech recognition, the desired performance cannot be 
obtained for some scatters of classes when the subspace 
methods considering only within-class or between-class scat-
ter are used. This situation is encountered especially when 
the number of classes increases. Therefore, between-class 
scatters can be considered together with within-class scatters 
in the speech recognition. 
 
In this paper, between-class scatter matrices defined in four 
different forms are used for a unique subspace of all classes 
and separate subspace of each class. The effects of these 
matrices on the isolated word recognition are investigated 
for the TI-digit database. It is seen that the best results for 
the unique subspace are obtained for 2

TBΦ . In this case, the 
recognition rates of 97.926% and 95.82% are obtained for 
the training and test sets respectively. These results are 
greater than the results given in literature for the FLDA 
method [13,20].  
 
When separate subspaces from within-class and between-
class scatter matrices are used for each class as in Table 4, 
and the results obtained from these subspaces are combined 
using the Borda Count method, the recognition rates of 
98.3% and 97.4% are obtained for the training and test sets 
respectively. However, when separate within-class scatters 
are used for each class, highest recognition rates are ob-
tained (100% for the training set and 98.8 for the test set) 
[15]. In conclusion, the results in Table 4 indicate that con-
sideration of between-class scatters is unnecessary for TI-
digit database.  
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