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ABSTRACT
In this paper, we propose a new feature for speech recog-
nition and speaker identification application. The new fea-
ture is termed as warped-discrete cosine transform cepstrum
(WDCTC). The feature is obtained by replacing the discrete
cosine transform (DCT) by the warped discrete cosine trans-
form (WDCT, [4]) in the discrete cosine tranform cepstrum
(DCTC [2]). The WDCT is implemented as a cascade of
the DCT and IIR all-pass filters. We incorporate a nonlin-
ear frequency-scale in DCTC which closely follows the bark-
scale. This is accomplished by setting the all-pass filter para-
meter using an expression given by Smith and Abel [5] . Per-
formance of WDCTC is compared to mel-frequency cepstral
coefficients (MFCC) in a speech recognition and speaker
identification experiment. WDCTC outperforms MFCC in
both noisy and noiseless conditions.

1. INTRODUCTION

For the past two decades, the feature extraction algorithm of
Davis and Mermelstein [1] has been used extensively in the
field of speech and audio processing. The algorithm stems
from two ideas: (1) vocal tract modeling, and (2) homomor-
phic filtering. In the vocal tract model, speech is produced by
passing an excitation through a filter whose response models
the effects of the vocal tract on the excitation. In homomor-
phic filtering, the convolution of the excitation with the vocal
tract response is transformed to addition, where linear filter-
ing techniques are applied to remove the excitation from the
filter response. Unlike homomorphic filtering, the Davis and
Mermelstein algorithm generates mel-frequency cepstral co-
efficients (MFCC) by transforming the log-energies of the
spectrum passed through a bank of band-pass filters. The
MFCC filter bank is composed of triangular filters spaced on
a logarithmic scale. The spacing of the filters follow the mel-
scale, which is inspired by the critical band measurements of
the human auditory system.

MFCC was compared to the linear predictive cepstral co-
efficients (LPCC) and the discrete cosine transformed cep-
strum (DCTC [2]) in a speaker identification task presented
by Muralishankar et al [3]. Speaker identification using
DCTC was shown to perform better than LPCC but worse
than MFCC [3]. It is observed that the underperformance
of DCTC when compared to MFCC can be attributed to the
absence of a nonlinear frequency scale. We propose to incor-
porate the nonlinear frequency scale for the DCTC feature
which we believe will improve its performance to match that
of MFCC. This is achieved by using the warped discrete co-
sine transform (WDCT) instead of DCT in obtaining DCTC.
The WDCT is implemented as a cascade of the DCT and IIR

all-pass filters whose parameters are used to adjust the trans-
form according to the frequency contents of the signal block
[4]. As a parallel, the advantage of using WDCT over DCT
for image compression has been shown in [4].

Smith and Abel [5] derived an analytic expression for an
all-pass filter parameter such that the mapping between the
warped and the unwarped frequencies, for a given sampling
frequency fs, follows the psychoacoustic Bark-scale. This
expression is used to get WDCT. Applying WDCT to DCTC
generates a new feature, warped discrete cosine transform
cepstrum (WDCTC). To evaluate the efficacy of the new fea-
ture in speech processing applications, we compare the per-
formances of WDCTC with MFCC for vowel recognition
and speaker identification tasks. Our experimental results
show that WDCTC consistently performs better than MFCC.

This paper is organized as follows. In section 2, we intro-
duce the WDCT and present its nonlinear frequncy resolution
property. In section 3, WDCT is incorporated into DCTC. In
section 4, we present the comparative performances of WD-
CTC and MFCC for vowel recognition and speaker identifi-
cation tasks. Section 5 provides the concluding remarks.

2. WARPED DISCRETE COSINE TRANSFORM

2.1 Definition
Here, we review an N-point WDCT of the input vec-
tor [x(0),x(1), ...,x(N − 1)]T [4]. The N-point DCT,
{X(0),X(1), ...,X(N −1)} is defined by

X(k) = U(k)
N−1

∑
n=0

x(n)cos
(2n+1)k

2N
π (1)

for k = 0,1, ...,N −1 where

U(k) =

{ 1√
2

k = 0
1, otherwise.

(2)

The kthrow of the N×N DCT matrix can be viewed as a filter
whose transfer function is given by

Fk(z−1) =
N−1

∑
n=0

U(k)cos
(2n+1)kπ

2N
z−n. (3)

That is, the ith coefficient of Fk(z−1) is the (k, i)th element
of the DCT matrix. It can be shown that Fk(z−1) is a band-
pass filter with a center frequency at (2k + 1)/2N, with the
sampling frequency normalized to 1. Hence, the magnitude
response of Fk(z−1) for small k is larger for low-frequency
inputs such as voiced sounds, which enable data compres-
sion by giving more emphasis to the lower band outputs



than the higher band ones [4]. Further, inputs with mostly
high-frequency components such as unvoiced sounds have a
higher magnitude response of Fk(z−1) for large k, which en-
ables high frequency coefficients to have compacted energy.
This is a desirable feature for noise removal purposes [6].

Note that the frequency resolution of the DCT is uni-
form. Therefore, incorporating a nonlinear frequency reso-
lution closely following the psychoacoustic Bark-scale will
result in an enhanced representation for the speech signals.
We introduce such a nonlinearity in DCTC using warping.
To warp the frequency axis, we apply an all-pass transfor-
mation by replacing z−1 with an all-pass filter A(z) defined
by

A(z) =
−β + z−1

1−β z−1 (4)

where β is the control parameter for warping the frequency
response. A(z) is known as the Laguerre filter and is widely
used in various signal processing algorithms. The resulting
Fk(A(z)) now becomes an infinite impulse response (IIR) fil-
ter given by

Fk(A(z)) =
N−1

∑
n=0

U(k)cos
(2n+1)kπ

2N
(A(z))n. (5)

2.2 Implementation of the WDCT
The WDCT can be implemented in several ways. The most
straightforward approach is to implement the filters in a La-
guerre network (considering first order all-pass filters, A(z),
which are reset every N samples). In the second approach,
we can implement the filtering by a matrix-vector multipli-
cation in two steps: first we divide the all-pass IIR transfer
functions into N terms, and then sample the frequency re-
sponses of the warped filter bank to obtain the WDCT matrix
through an inverse discrete Fourier transform (IDFT).

We use the second approach, which is the filter bank
method suggested by Cho and Mitra [4]. For an N-tap fi-
nite impulse response (FIR) filter, the result of filtering and
decimation by N corresponds to the inner product of the filter
coefficient vector and the input vector. From Parseval’s rela-
tion, this is again equal to the inner product of the conjugate
DFT of the input and the DFT of the filter coefficients, which
is equal to the sampled value of Fk(e jω ) for ω = (2πk/N)
where k = 0,1, ...,N − 1. Similarly, we can approximate the
result of the filtering with Fk(A(e jω)) as the inner product of
the input vector and the IDFT of the sampled sequence of
Fk(A(e jω )). More detailed description about the WDCT and
its implementations can be found in [4].

2.3 Selection of the all-pass filter coefficient
Nonuniform resolution fast Fourier transform (FFT) was in-
troduced by Oppenheim, et al [7]. The main idea was to use a
network of cascaded first order all-pass filter sections for fre-
quency warping of the signal and then apply FFT to produce
the warped spectrum from the preprocessed signal.

The transfer function of a first order all-pass filter is given
in eq. 4. By definition, the magnitude response of the filter
is a constant. The phase response of A(z) is given by

ϖ = ω +2arctan
(

β sin(ω)

1−βcos(ω)

)
. (6)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Re(z)

Im
(z

)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Re(z)

Im
(z

)

  

z −1 A(z) 

B = 0 B = 0.5 

(a) (b) 

Figure 1: Linear and warped frequency sampling. (a) Lin-
ear frequency sampling of trivial all-pass filter (β = 0).
(b)Warped frequency resolution of first-order all-pass filter
(β = 0.5).

The phase function determines a frequency mapping occur-
ing in the all-pass chain [7]. Depending on the sign of β ,
the low or high frequency range is expanded whereas the re-
maining part of the unit circle becomes compressed. This
is shown in Fig. 1. For a certain value of β the frequency
transformation closely resembles the frequency mapping oc-
curing in the human auditory system. Smith and Abel [5]
derived an analytic expression for β so that the mapping, for
a given sampling frequency fs, matches the psychoacoustic
Bark-scale mapping. The value is given by

β ≈ 1.0211
(

2
π

arctan(0.076 fs)

) 1
2
−0.19877. (7)

For a given fs (say 16 kHz), we calculated β from eq. 7 to
generate the WDCT matrix.

3. WARPED DISCRETE COSINE TRANSFORMED
CEPSTRUM

Two variants of DCTC were proposed in [3], namely, DCTC-
1 and DCTC-2. It was shown that DCTC-2 performs better
than DCTC-1 and both outperform LPCC in a speaker iden-
tification task. Hence, we chose the DCTC-2 algorithm and
replaced DCT with WDCT to obtain the WDCTC algorithm.
The new WDCTC algorithm is outlined below.

Consider a finite duration, real sequence x(n), defined for
0≤ n≤N−1 and zero elsewhere. Taking an N-point WDCT
of the above sequence, we have XWDCT (k) defined for 0 ≤
k ≤ N −1. We can write XWDCT (k) as

XW DCT (k) = exp(ξ (k)) |XWDCT (k)| (8)

where
ξ (k) =

jπ
2

(sgn(XW DCT (k))−1)

and

sgn(p) =

{
1, for p ≥ 0
−1, for p < 0 .

Taking natural logarithm on both sides of eq. 8,

ln{XWDCT (k)} = ξ (k)+ ln |XW DCT (k)| , (9)

then we obtain the WDCTC of x(n) as

x̂(n) = Re{IDCT (ξ (k)+ ln |XWDCT (k)|)}. (10)
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Figure 2: Noisy vowels average recognition performances of MFCC and WDCTC. (a) Using VQ model in presence of CAR
noise. (b) Using VQ model in presence of Babble noise. (c) Using 1-NN model in presence of CAR noise. (d) Using 1-NN
model in presence of Babble noise.

Here, an inverse discrete cosine transform (IDCT)[8] is used
to get the WDCTC sequence and it is denoted as x̂(n).

4. RESULTS AND DISCUSSION

To test the effectiveness of our proposed feature WDCTC, we
conducted two experiments: 1. vowel recognition, 2. speaker
identification. We compare the recognition performance of
the WDCTC feature with MFCC.

4.1 Vowel recognition
Vowel recognition experiments were conducted
on the TIMIT database. We selected 5 vowels
/aa/,/eh/,/iy/,/ow/ and /uw/ for our experiments.
The vowel segments were extracted from continuous speech
using the train and test set of the TIMIT database (Dialect
Region: North Midland) to form the train and test set for our
experiments. The number of speakers in our train and tests
sets were 72 and 26, respectively.

Each vowel segment was sampled at 16 kHz. Duration
of each frame of speech was 16 ms, with an overlap of 8
ms between successive frames. Each frame of speech was
preemphasized with a factor equal to 0.98 and Hamming
windowed. Eighteen dimensional feature vectors (MFCC
and WDCTC) were obtained for each frame. For obtaining
MFCC, the Mel-scale was simulated using a set of 18 trian-
gular filters. For WDCTC, we used eq.7 to get corresponding
β for a given fs. The WDCT matrix was generated using this
β . The WDCTC feature was generated by using eq. 10. The
first 18 WDCTC coefficients, excluding the gain term, form
the feature vector.

Each vowel is modeled using a 32-length vector quanti-
zation (VQ) codebook, consisting of code vectors of MFCC
and WDCTC coefficients. The codebooks are trained using
the k-means clustering algorithm [11], employing a Euclid-
ean distance measure. Vowels are identified by evaluating the
distortion between the features of the test vowel sample and
the models in the vowel database. We have used two classi-
fiers for our experiments: VQ and 1-Nearest Neighbour (NN)
model [13].

Car noise and Babble noise were added to noiseless vow-
els. To simulate different noisy conditions, the variance of
the noise was adjusted with respect to the variance of noise-
less vowels to obtain target signal-to-noise ratios (SNR) for
noisy vowels. SNR was varied from -5 dB to 20 dB and
the noisy vowel recognition performances using MFCC and
WDCTC features were obtained. The vowel recognition per-
formance of MFCC and WDCTC features for clean speech
using VQ and the 1-NN model is shown in Table 1. Fig-
ure 2 shows the noisy vowel recognition performances of
MFCC and WDCTC. Figure 2(a) and (b) show the recog-
nition accuracy in percentage and the comparative perfor-
mances in the presence of car noise and babble noise for the
VQ model. Similarly, Figs. 2(c) and (d) show the results
for 1-NN model. From Table 1 and Fig. 2, we can see that
WDCTC outperforms MFCC.

4.2 Speaker Identification
We employed WDCTC as a feature for text-independent
speaker identification. Our experiments with WDCTC and
MFCC demonstrate the viability of WDCTC for speaker
identification. We have performed speaker identification ex-



Table 1: Comparision of clean vowel average recognition
performance of MFCC and WDCTC features.

VQ model 1-NN model
Feature Train Test Train Test
MFCC 90.86 67.83 99.01 71.51

WDCTC 90.97 69.48 99.75 73.00

periments on a limited subset (21 male speakers) of the NIST
evaluation corpus 1996 database [9]. This corpus was de-
rived from the entire switchboard-I corpus for speaker verifi-
cation evaluations. The development data consisted of train-
ing and test speech from 45 male and 45 female speakers
which was sampled at 8 kHz. The evaluation data consisted
of training data from 21 male and 19 female target speakers
plus test speech from these targets and 167 male and 216 fe-
male unseen imposters [10]. There are 3 training conditions
for each target speaker. These conditions are 1). one-session
training 2). one-handset training and 3). two-handset train-
ing. All these conditions use 2 minutes of training speech
data from the target speaker.

We intend to compare the speaker-identification perfor-
mances of WDCTC and MFCC rather than use these fea-
tures for speaker verification. So, we chose one-session and
one-handset conditions for training. Further for testing, we
used one (Test Set 1) and two (Test Set 2) handset condi-
tions from the training set of NIST. We obtain the 18 dimen-
sional MFCC and WDCTC feature vectors for speaker train
and test sets after excluding the first coefficients from both.
Each speaker is modeled using a 32-length vector quanti-
zation codebook, consisting of code vectors of MFCC and
WDCTC coefficients. The codebooks are trained using the
k-means clustering algorithm [11], employing a euclidean
distance measure. Speakers are identified by evaluating the
distortion between the features of the test speech sample and
the models in the speaker database. We use VQ and 1-NN
[13] for classification. The experiments are evaluated as in
[12]. The test speech of each speaker is processed to pro-
duce a sequence of feature vectors. This sequence is then di-
vided into overlapping segments of 100 feature vectors each,
with an overlap of 90 feature vectors between successive seg-
ments. Each segment is considered a separate test utterance.
If NT is the total number of segments and NC is the num-
ber of correctly identified segments, then the identification
performance is evaluated in percentage as NC

NT
×100. Thus, a

segment based performance metric, rather than direct speaker
recognition performance, has been used. The speaker iden-
tification results are shown in Table 2. We can see better
performance of WDCTC over MFCC. Certainly, the overall
accuracy achieved for this task is low. This is due to the fact
that we are using simple classifiers and mainly bank on the
feature itself for the performance. Further, the recognition
accuracy of Test Set 1 is high as the test set has been taken
from the training data itself.

5. CONCLUSION

We have presented WDCTC as a feature for vowel recogni-
tion and speaker identification. In our experiments, the per-
formance using WDCTC is consistently better than MFCC.
The improved performance of WDCTC may be due to incor-
poration of nonlinear frequency-scale which approximates
the bark-scale. The added binary phase in WDCTC may also

Table 2: Comparision of speaker identification performance
of MFCC and WDCTC features.

Test Set 1 Test Set 2
Speaker

Identification MFCC WDCTC MFCC WDCTC
Rate (%) using
1-NN Model 90.11 96.32 23.5 29.63
VQ Model 27.05 33.57 2.75 8.99

contribute towards better performance over MFCC. Here, the
classifiers (VQ model and 1-NN) are chosen to minimize
their influence over the features. However, the results thus
obtained are low compared to the state of the art in vowel
recognition and speaker identification tasks.
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