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ABSTRACT

In this paper, we present a robust watermarking technique
that uses the wavelet based hard thresholding concept for
image denoising to determine the wavelet coefficients to be
watermarked. A multi-bit watermark is embedded into the
discrete wavelet coefficients of a still image. A correspond-
ing blind watermark extraction algorithm is proposed. The
proposed method is compared with other multiresolution wa-
termarking methods. The simulation results show that the
proposed method provides better performance under most at-
tacks including JPEG compression.

1. INTRODUCTION

Image watermarking is the process of embedding a secret
message, watermark, inside an image such that the visual
perception of the watermarked image is unaltered and the
watermark is invisible and robust to attacks. This secret wa-
termark is used for copyright protection and ownership au-
thentication. The two traditional approaches for image wa-
termarking are the spatial and spectral domain techniques.
In the spatial domain, the watermark is embedded in selected
regions chosen based on the texture of the given image [1, 2].
While in the spectral domain, the watermark is embedded in
the transform domain using methods such as DCT and DWT,
in the mid-frequency range to ensure transparency and ro-
bustness of the watermark, simultaneously [3]. The DWT re-
mains one of the most effective and easy to implement tech-
niques in image watermarking. It has also been used in vari-
ous image processing applications such as image denoising.
The biggest issue in DWT-based image watermarking is how
to choose the coefficients to embed the watermark. The most
common approaches include modifying the largest DWT co-
efficients in all decomposition levels or quantizing certain
DWT coefficients in different levels and scales. Other ap-
proaches mark the host image by setting modulo 2 difference
between the largest and the smallest coefficients according to
the watermark bit value [4, 5].

The effectiveness of DWT-based image denoising in sep-
arating the wavelet coefficients that belong to the noise and
the signal motivates us to use it for watermarking. The
threshold derived for separating the ’significant’ and the ’in-
significant’ coefficients, i.e. signal and noise, will be used to
determine the coefficients to be watermarked.

The paper is organized as follows. Section 2 gives a brief
background on the use of DWT in watermarking and denois-
ing. Section 3 describes the embedding stage of the water-
marking algorithm while Section 4 derives the extraction al-
gorithm. In Section 5, the performance of the algorithm un-
der different attacks is demonstrated. A summary of the pa-
per and some conclusions are given in Section 6.

2. BACKGROUND

In this paper, we use the DWT for embedding the watermark.
The multiresolution wavelet transform of an image decom-
poses the image into bands of approximately equal band-
width on a logarithmic scale. Similarly, the retina of the
human eye splits the image into several components, each
having a bandwidth of approximately one octave. Therefore,
it is believed that the use of DWT for watermarking will pro-
duce an imperceptible watermark [4]. The use of the DWT
domain for image watermarking and denoising have been
studied in detail. The DWT splits the signal into high and
low frequency parts. The high frequency part contains infor-
mation about the edge components, while the low frequency
part is split again into high and low frequency parts as in Fig
1. The high frequency components are usually used for wa-
termarking since the human eye is less sensitive to changes
in edges [6]. In watermarking, the main concern besides in-
visibility of the watermark is how to choose the coefficients
to be watermarked such that they will survive the possible
attacks that the transmitted image may go under. While for
denoising, the concern is to get rid of the coefficients that
do not carry important information, i.e noise. The proposed
method uses the concept of image hard thresholding to de-
termine which coefficients not to embed the watermark into.
This involves finding the threshold for hard denoising and
keeping all the coefficients under this threshold unmodified
and choosing the coefficients just above the threshold to em-
bed the watermark. This approach ensures simultaneously
that the ’noise’ or the ’insignificant’ coefficients and the large
coefficients which correspond to the ’visible’ part of the im-
age are not altered. This, in return, ensures imperceptibility
and robustness of the proposed watermarking algorithm.

Figure 1: Three levels discrete wavelet decompositions.

3. WATERMARK EMBEDDING

In this paper, we assume that the original image I is of size
N×N and the watermark, w, is a binary sequence of length R,



which takes values from {1,−1}. The embedding algorithm
can be summarized as follows:
1. Obtain the Lth level DWT of the original image to ob-

tain the detail (horizontal HLl , vertical LHl and diagonal
HHl) images at each level l = 1,2, ...L, plus the approxi-
mation at the Lth level. In this paper, L is set to 3.

2. For each orientation in level l , sl ∈ {HLl ,LHl ,HHl}, find
all coefficients that satisfy: Csl (n,m) > T̂B, where l is the
wavelet decomposition level, s is the orientation and T̂B
is the threshold for hard de-noising given by [7]:
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This threshold is derived based on the generalized gaus-
sian model for the wavelet coefficients and it minimizes
the mean square error for hard thresholding.

3. Arrange the coefficients found in step 2 in descending
order with respect to their absolute values.

4. Take the last R coefficients found in step 3 at each scale
and proceed as follows:

Csl (n,m) = wr ·α
∣∣Csl (n,m)

∣∣ ,
r = 1,2, ...R. (5)

where α is a positive constant that controls the strength
of the watermark embedding.

5. Save the locations of the modified coefficients as a key
K. The key has value one if the coefficient is modified
and zero if not.

6. Find the inverse DWT to obtain the watermarked image.
This method modifies some of the coefficients with val-
ues greater than T̂B by scaling them with a constant α .
Since the high coefficients which correspond to the ’vis-
ible’ part of the image are not altered, the imperceptibil-
ity of the watermark is ensured even if the watermark is
added in all levels.

4. WATERMARK DETECTION

For copyright protection applications, it is important to detect
or extract the watermark even after the watermarked image
is attacked. The extraction process can be summarized as
follows:
1. Find the Lth level DWT of the received image Î.
2. Find the modified coefficients according to the given key

K.
3. For each orientation sl in every level l, estimate the value

of the watermark bit according to the sign of the corre-
sponding wavelet coefficient Ĉsl (n,m):

if Ĉsl (n,m) > 0, ŵr = 1
else ŵr = −1, r = 1,2, ...R. (6)

4. The most common bit value of the watermark among the
different scales and levels is assigned to the estimated
watermark.

The following correlation based detector is applied to deter-
mine the similarity between the extracted watermark, ŵ, and
the actual one, w,

〈w(n), ŵ(n)〉
watermark

>
<

no watermark

η . (7)

The expected value of the maximum of this correlation
is,

ηmax = R. (8)

Let,

z = ∑
n

w(n)ŵ(n). (9)

The threshold η is derived by applying the Neyman-
Pearson criterion to this detection statistic, which corre-
sponds to solving,

PFA =
+∞∫
η

fz(z|H0) dz, (10)

where fz(z|H0) is the pdf of z. The mean and the variance of
z, since w(n)ŵ(n) takes only two values -1 and 1 with equal
probability, are given by,

µz = 0. (11)

σ2
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By applying the central limit theorem [8], the pdf of z
can be assumed to be a normal distribution. Therefore, PFA
is given by,
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old, normalized by its maximum value, can be written as,
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R
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The result in (14) shows that the choice of η should be
dependent on the length of the watermark R. In particular,
for R = 128 and PFA = 0.01, η = 0.203.

5. RESULTS

The watermark embedding algorithm proposed in this pa-
per has been applied to the well-known Lena image of size
256×256. The watermark is a randomly generated sequence
with values 1 and -1 of length 128 and is embedded into every
resolution level using three level wavelet decomposition with
haar filter and α = 6 unless otherwise mentioned. The resul-
tant watermarked image is similar to the original one with no
visible differences with PSNR=47.1dB. The algorithm has
been tested under different attacks. Table 1 shows the effect
of the choice of α on the robustness of the proposed algo-
rithm under additive white gaussian noise ’AWGN’, JPEG



compression, median filtering ’MF’ and rotation. It is clear
that increasing α improves the robustness of the algorithm.
It is important to note that α should be chosen such that
the imperceptibility of the watermark is maintained, so the
choice of α is image dependent and for Lena image, it is
found that α < 8 will produce an invisible watermark and
high PSNR. The PSNR ranges from 59.5dB for α = 1 to
45.8dB for α = 7.

Table 2 shows the effect of the watermark length R in the
robustness of the proposed algorithm. The results are very
close to each other for AWGN, JPEG and rotation attacks,
while increasing R improves the robustness of the watermark
under median filtering (MF).

Table 1: The correlation between the extracted and original
watermarks under different types of attacks with different α
values.

α 1 4 7
AWGN (PSNR=45db) 0.73 1 1
AWGN (PSNR=40db) 0.53 0.96 0.98
AWGN (PSNR=30db) 0.27 0.75 0.79
AWGN (PSNR=20db) 0.1 0.2 0.52

JPEG (Q=70%) 0.23 0.76 0.77
JPEG (Q=80%) 0.41 0.87 0.88
JPEG (Q=90%) 0.55 0.94 0.95

JPEG (Q=100%) 1 1 1
MF (1×1) 1 1 1
MF (3×3) 0.55 0.88 0.9
MF (5×5) 0.15 0.55 0.65
MF (7×7) 0.1 0.4 0.4

Rotation (1◦) 0.85 1 1
Rotation (3◦) 0.8 0.98 0.98
Rotation (5◦) 0.8 0.97 0.97
Rotation (7◦) 0.77 0.97 0.97

Table 2: The correlation between the extracted and original
watermarks under different types of attacks for different wa-
termarks with different lengths with α = 6.

R 32 64 128
AWGN (PSNR=45) 1 1 1
AWGN (PSNR=40) 0.99 0.97 0.98
AWGN (PSNR=30) 0.7 0.75 0.74
AWGN (PSNR=20) 0.2 0.34 0.33

JPEG (Q=70%) 0.5 0.45 0.70
JPEG (Q=80%) 0.5 0.5 0.75
JPEG (Q=90%) 0.7 0.62 0.85

JPEG (Q=100%) 1 1 1
MF (1×1) 1 1 1
MF (3×3) 0.82 0.73 0.90
MF (5×5) 0.56 0.50 0.55
MF (7×7) 0.56 0.5 0.5

Rotation (1◦) 1 1 1
Rotation (3◦) 0.97 1 0.98
Rotation (5◦) 0.98 0.97 0.97
Rotation (7◦) 0.99 0.98 0.97

A comparison with another well-known DWT based al-
gorithm introduced by Kundur and Hatzinakos has been per-
formed [4]. The authors in [4] propose a DWT based water-
marking algorithm based on quantizing certain DWT coeffi-
cients at each level. The same watermark has been used in
both methods. The two methods were tested under attacks,
AWGN, JPEG compression and median filtering (MF). Fig.
2 shows the correlation between the extracted watermark and
the original one under different attacks for both methods. Al-
though the performance under AWGN is very close, the pro-
posed method performs better under JPEG compression and
median filtering. One reason of this improvement is that the
method in [4] modifies some of the DWT coefficients with
small values (less than T̂B) which are not robust against at-
tacks. Another reason is that the proposed method always
chooses coefficients greater than T̂B and embeds the water-
mark in a multiplicative way in all levels, which makes it
more robust against attacks.
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Figure 2: The comparison of the proposed method and the
method in [4] under AWGN, JPEG compression and median
filtering. The plots with ’*’ corresponds to the proposed al-
gorithm.

6. CONCLUSIONS

In this paper, we have presented a new robust watermark-
ing algorithm based on DWT. The algorithm uses the idea
of hard de-noising for choosing the coefficients to be water-
marked. The performance of the proposed blind detection al-
gorithm is quantified by deriving the optimum threshold for
a given false alarm rate. The proposed algorithm is shown to
be transparent and highly robust under attacks. The proposed
algorithm performs better than a previously introduced DWT
based method. The effect of the choice of α and the water-
mark length were studied. Future work will focus on finding
the optimal α and studying the possibility of applying soft
thresholding in choosing the coefficients to be watermarked.
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