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ABSTRACT
The signal tracking properties of two adaptive notch fil-
tering algorithms are studied analytically using a linear
filter approximation technique. Even though restricted
to a single frequency case, the presented analysis pro-
vides valuable insights into the tracking mechanisms,
including the speed/accuracy tradeoffs, the achievable
performance bounds, and tracking limitations of the an-
alyzed algorithms. Additionally, it allows one to for-
mulate some useful rules of thumb for choosing design
parameters.

1 Introduction

Consider the problem of elimination or extraction of a
nonstationary sinusoidal signal s(t) buried in noise

y(t) = s(t) + v(t) =
k∑

i=1

ai(t)e
j

t∑
s=1

ωi(s)

+ v(t). (1)

where v(t) is a complex white noise of variance σ2
v .

We will assume that E[v2
R(t)] = E[v2

R(t)] = σ2
v/2,

E[vR(t)vI(s)] = 0, ∀ t, s, where vR(t) = Re[v(t)],
vI(t) = Im[v(t)], and that the (complex) amplitudes
ai(t) and frequencies ωi(t) in (1) are slowly time-varying.
The problem of elimination and extraction of complex
sinusoidal signals (called cisoids) embedded in noise was
considered by many authors - see e.g. [3], [4] and the
references therein. In this paper we will compare signal
tracking properties of two adaptive notch filters: the
algorithm proposed in [1] and the multiple frequency
tracker, described in [3]. Unlike the earlier studies [3],
[4], which focused on the problem of frequency tracking,
our primary interest will be in signal tracking charac-
teristics of the compared filters.
The adaptive notch filter proposed in [1] combines the
exponentially weighted least squares approach to am-
plitude tracking with gradient search approach to fre-
quency tracking

f̂i(t) = ejω̂i(t)f̂i(t− 1)
i = 1, . . . , k
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ε(t) = y(t)− f̂T(t)α̂(t− 1)

Q(t) =
1
λ

[Q(t− 1)

− Q(t− 1)f̂(t)f̂H(t)Q(t− 1)

λ + f̂H(t)Q(t− 1)f̂(t)

]

k(t) = Q(t)f̂(t)
α̂(t) = α̂(t− 1) + k∗(t)ε(t)

gi(t) = Im{ε∗(t)f̂i(t)âi(t− 1)}
ω̂i(t + 1) = ω̂i(t)− ηgi(t)

i = 1, . . . , k

ŝ(t) =
k∑

i=1

f̂i(t)âi(t) (2)

where α̂(t) = [â1(t), . . . , âk(t)]T and f̂(t) = [f̂1(t), . . . ,
f̂k(t)]T.
In the above algorithm λ (0 < λ < 1), usually set close
to one, denotes the so-called forgetting constant, which
controls the rate of amplitude adaptation, and η > 0,
usually set close to zero, denotes the stepsize coefficient,
which controls the rate of frequency adaptation.
The initial conditions for (2) should be set to α̂(0) = 0
and Q(0) = cIk, where Ik denotes the k × k identity
matrix and c is a large positive constant - this is a stan-
dard initialization procedure for all RLS-type recursive
estimation algorithms [5].
The multiple frequency tracker, which bears some re-
semblance to (2), will be described in Section 2.
It is worth noticing that the algorithm (2) is a special
(signal) case of a generalized adaptive notch filtering
algorithm proposed in [2] for the purpose of identifi-
cation/tracking of quasi-periodically varying complex-
valued dynamic systems.

2 Tracking analysis

Before we start analyzing tracking properties of the al-
gorithm (2), we will convert it into a more convenient
form by applying the linear time-varying transforma-
tion: β̂(t) = F̂(t) α̂(t) , l(t) = F̂∗(t) k(t) and P(t) =
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F̂∗(t)Q(t)F̂(t), where F̂(t) = diag{f̂1(t), . . . , f̂k(t)}.
Using this transformation and setting Â(t) =
diag{ejω̂1(t), . . . , ejω̂k(t)} one can rewrite (2) in the fol-
lowing form

ε(t) = y(t)− 1T
k Â(t)β̂(t− 1)

P(t) =
1
λ

Â∗(t) [P(t− 1)

− P(t− 1)1k1T
k P(t− 1)

λ + 1T
k P(t− 1)1k

]
Â(t)

l(t) = P(t)1k

β̂(t) = Â(t)β̂(t− 1) + l∗(t)ε(t)

gi(t) = Im{ε∗(t)ejω̂i(t)β̂i(t− 1)}
ω̂i(t + 1) = ω̂i(t)− ηgi(t)

i = 1, . . . , k

ŝ(t) =
k∑

i=1

β̂i(t) (3)

where β̂(t) = [β̂1(t), . . . , β̂k(t)]T, β̂i(t) = f̂i(t)âi(t), i =
1, . . . , k and 1k = [1, . . . , 1︸ ︷︷ ︸

k

]T.

It should be stressed, that the algorithms (2) and (3) are
strictly input-output equivalent, i.e. when started with
the same initial conditions (β(0) = α(0),P(0) = Q(0))
they yield identical signal estimates ŝ(t).
As is straightforward to check, the algorithm (3) is al-
most identical with the algorithm known as multiple
frequency tracker (MFT), proposed by Tichavský and
Händel in their seminal paper [3] (see equations (9) -
(11) in [3]). It turns out that the only difference lies in
the frequency update mechanism, which in the case of
MFT has the form (in our notation)

gi(t) = Arg

[
β̂i(t)

β̂i(t− 1)ejω̂i(t)

]

ω̂i(t + 1) = ω̂i(t)− ηgi(t)
i = 1, . . . , k

We will analyze (3) using the approximating linear fil-
ter (ALF) technique, introduced in [3]. Approximating
linear filters characterize the relation between the se-
quences of estimation errors and the sequences of mea-
surement noise v(t) and of the one-step changes of the
true frequency ω(t + 1) − ω(t), provided that the an-
alyzed algorithms operate in a neighborhood of their
equilibrium state.
Similarly as in [3], we will consider the single frequency
case (k = 1) and steady state tracking conditions. Note
that for k = 1, the scalar (1 × 1) counterpart of the
matrix P(t), denoted by p(t), tends to a constant steady
state value p(∞) = limt 7→∞ p(t) = 1 − λ = µ. Hence,
in the case considered, one can rewrite (3) in a much
simpler form

ε(t) = y(t)− ejω̂(t)β̂(t− 1)

β̂(t) = ejω̂(t)β̂(t− 1) + µε(t)

g(t) = Im{ε∗(t)ejω̂(t)β̂(t− 1)}
ω̂(t + 1) = ω̂(t)− ηg(t)

ŝ(t) = β̂(t) (4)

For MFT the analogous equations are identical with (4),
except that

g(t) = Arg

[
β̂(t)

β̂(t− 1)ejω̂(t)

]
(5)

Denote by ∆β̂(t) = β̂(t) − β(t) = ŝ(t) − s(t) the signal
estimation error and let

∆φ̂(t) = β∗(t)∆β̂(t) = ∆φ̂R(t) + j∆φ̂I(t)
e(t) = β∗(t)v(t) = eR(t) + jeI(t)

w(t + 1) = ω(t + 1)− ω(t) (6)

Using the technique proposed in [3], the following result
can be proved

Proposition 1
Assume that the sequences {e(t)} and {w(t)} are uni-
formly small so that one can neglect higher than first-
order moments of their elements. Then the algorithm
(4) applied to signal

y(t) = β(t) + v(t), β(t) = ejω(t)β(t− 1) (7)

can be approximately described by the following linear
filtering equations

∆φ̂R(t) = F (q−1)eR(t)

∆φ̂I(t) = G1(q−1)eI(t) + G2(q−1)w(t) (8)

where q−1 denotes the backward shift operator
(q−1x(t) = x(t− 1)) and

F (q−1) =
1− λ

1− λq−1

G1(q−1) =
1− λ + (λ− δ)q−1

1− (λ + δ)q−1 + λq−2

G2(q−1) = − b2λ

1− (λ + δ)q−1 + λq−2
(9)

with b = |β(t)| and δ = 1− ηb2.
Outline of proof:

Using the approximation ej∆ω̂(t) ∼= 1 + j∆ω̂(t), where
∆ω̂(t) = ω̂(t) − ω(t), and neglecting all terms of order
higher than one in ∆ω̂(t) and ∆β̂(t−1), the error equa-
tions for (4) can be written down in the form

∆φ̂R(t) ∼= λ∆φ̂R(t− 1) + µeR(t)

∆φ̂I(t) ∼= λ∆φ̂I(t− 1) + λb2∆ω̂(t) + µeI(t)

∆ω̂(t + 1) ∼= δ∆ω̂(t)− η∆φ̂I(t− 1)
+ ηeI(t)− w(t + 1) (10)
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All approximations hold for sufficiently high signal-to-
noise ratio (SNR) and for sufficiently low rate of fre-
quency changes compared with 1/SNR.
Solving equations (10) for ∆φ̂R(t) and ∆φ̂I(t) one arri-
ves at (9). The complete proof can be found in [6].

It is easy to check that for any λ and δ from the interval
(0,1) the poles of all transfer functions in (9) lie inside
the unit circle in the complex plane. Hence, under the
constraint mentioned above, the approximating linear
filter associated with (4) is stable.
Following many earlier tracking studies, we will assume
that the frequency ω(t) evolves according to the random
walk model, i.e. that the frequency increments w(t)
form a zero-mean white noise sequence with variance σ2

w,
independent of v(t). It is straightforward to check that
e(t), similarly as v(t), is a complex-valued white noise
obeying σ2

e = E[|e(t)|2] = b2σ2
v , E[e2

R(t)] = E[e2
I(t)] =

σ2
e/2, E[eR(t)eI(s)] = 0, ∀ t, s. Hence, using standard

results from the linear filtering theory, one arrives at

E[(∆φ̂R(t))2] = I[F (z)] E[e2
R(t)] (11)

E[(∆φ̂I(t))2] = I[G1(z)] E[e2
I(t)] + I[G2(z)] E[w2(t)]

where
I[X(z)] =

1
2πj

∮
X(z)X(z−1)

dz

z

is an integral evaluated along the unit circle in the
z-plane, and X(z) denotes any stable proper rational
transfer function.
By means of residue calculus one obtains

I[F (z)] =
1− λ

1 + λ
∼= µ

2
(12)

I[G1(z)] =
1 + δ − λ− 3λδ + 2λ2

(1− λ)(1 + 2λ + δ)
∼= γ

2µ
+

µ

2

I[G2(z)] =
b4λ2(1 + λ)

(1− λ)(1− δ)(1 + 2λ + δ)
∼= b4

2µγ

where γ = 1 − δ = b2η and all approximations hold for
sufficiently small values of µ and γ.
For a constant-modulus signal it holds that |∆φ̂(t)|2 =
(∆φ̂R(t))2 + (∆φ̂I(t))2= b2|∆β̂(t)|2. Therefore, after
combining (11) with (6), (7) and (12), one arrives at the
following expression for the steady state mean-squared
signal estimation error

E[|β̂(t)− β(t)|2] ∼=
[

γ

4µ
+

µ

2

]
σ2

v +
b2

2µγ
σ2

w (13)

Observe that the derived formula includes terms propor-
tional to the adaptation gains µ = 1− λ and γ = 1− δ,
and terms inversely proportional to µ and γ. This stays
in agreement with the well-known fact in adaptive fil-
tering: the adaptation gains should be chosen so as to
compromise between the tracking speed of an adaptive
filter (which increases with growing µ and γ) and its

noise rejection capability (which decreases with growing
µ and γ) [5].
Denote by µβ and γβ the values of µ and γ that minimize
the mean-squared signal estimation error. Straightfor-
ward calculations yield

µβ = 4
√

2ξ, γβ =
√

2ξ

E[|β̂(t)− β(t)|2|µβ , γβ ] ∼= 4
√

2ξ σ2
v (14)

where

ξ =
b2σ2

w

σ2
v

(15)

Note that the optimal values of design parameters and
the best achievable performance are functions of a scalar
coefficient ξ - the product of the signal-to-noise ratio
b2/σ2

v and the variance of frequency changes σ2
w. The

coefficient ξ can be regarded a measure of signal non-
stationarity and plays an important role in analysis of
tracking capabilities of the algorithm (4).
Our first remark will concern the problem of choice of
design variables µ and γ (or equivalently λ and δ). First
of all, recall that γ, equal to b2η, is a function of a signal
power b2 = |β(t)|2. Therefore, unless |β(t)| is constant
(which we have been assuming so far) and known a pri-
ori, the user does not have full control over the adapta-
tion gain γ. This obvious drawback can be eliminated
by replacing the correction term g(t) in (4) with the
normalized correction term

ḡ(t) =
g(t)

b̂2(t)
= Im

[
ε∗(t)ejω̂(t)β̂(t− 1)

b̂2(t)

]
(16)

where b̂2(t) denotes a local estimate of b2 = |β(t)|2, for
example b̂2(t) = λob̂

2(t − 1) + (1 − λo)|β̂(t)|2, where
0 ≤ λo < 1 is the local averaging coefficient (e.g. λo =
0.9). Careful analysis shows that such modification does
not change equations of the approximating linear filter
associated with (4), provided that δ is redefined as δ =
1 − η. In this case γ is equal to η, i.e. it is an entirely
user-dependent quantity. The modifications described
above can be easily extended to the multiple frequency
case.
Even though our optimization study was not based on
realistic assumptions (the random walk model of signal
frequency variation can be criticized as rather naive),
its results, summarized in (14), have some practical rel-
evance as they suggest useful tuning rules. Observe that
γβ =µ2

β . Therefore, to make tuning easier it may be
worthwhile to set γ = µ2. The problem is then reduced
to selection of a single design parameter µ. Optimization
of µ can be performed either sequentially (e.g. by set-
ting µ(t) = µ[ξ̂(t)], where ξ̂(t) is a continuously updated
local estimate of the rate of signal nonstationarity), or
using parallel estimation approach (which combines in
a rational way the results yielded by a bank of adaptive
filters with different settings - see e.g. [5]). Because of
the lack of space such fully adaptive procedures will not
be discussed here.
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3 Comparison with MFT

While the frequency tracking properties of the multiple
frequency tracker (5) are known (see [3]), the results
of its signal tracking analysis are new and seem to be
presented for the first time.

Proposition 2
Assume that all conditions of ALF analysis are fulfilled.
Then the MFT algorithm applied to the signal (7) can
be approximately described by equations (8) with

F (q−1) =
1− λ

1− λq−1
(17)

G1(q−1) =
(1− λ)(1− ρq−1)

1− (2λ + ρ− ρλ)q−1 + λq−2

G2(q−1) = − b2λ

1− (2λ + ρ− ρλ)q−1 + λq−2

where ρ = 1− η.
Outline of proof:
The first two error equations of (10) remain valid for the
multiple frequency tracker. The third equation has the
form

∆ω̂(t + 1) = ρ∆ω̂(t) +
η(1− q−1)

b2
∆φ̂I(t)− w(t + 1)

Transfer functions, given by (17), can be easily obtained
by solving ALF equations with respect to ∆φ̂R(t) and
∆φ̂I(t). The complete proof can be found in [6].

One can check that the substitution δ = λ + ρ− ρλ (or
equivalently γ = ηµ) converts transfer functions (9), de-
rived in the previous subsection for the algorithm (4),
into the transfer functions (17), characterizing local be-
havior of the MFT algorithm. It is therefore clear that
for a single noisy cisoid both algorithms have essen-
tially the same signal tracking properties. Interestingly,
a similar conclusion was reached in [4], where the fre-
quency tracking properties of MFT were compared with
the analogous properties of yet another three adaptive
notch filtering algorithms.

4 Computer simulations

Figure 1 shows comparison of the theoretical variance of
the signal estimation error, given by (14), and the mean
square errors obtained via numerical simulation. The
generated signal consisted of a single cisoid (k = 1) with
constant amplitude b = 1, embedded in white complex
Gaussian noise with variance σ2

v = 0.2 (SNR=7 dB).
The evolution of the instantaneous frequency ω(t) was
modeled as a random walk process with the variance of
frequency increments set to σ2

w = 10−7 and with the
starting value set to ω(0) = π/2.
According to (14), to optimize signal tracking one should
set µ to µβ = 4

√
2ξ ∼= 0.032 and set γ to γβ =

√
2ξ =

0.001 (i.e. set η to ηβ = γβ/b2 = γβ). The analysis was
carried around the optimal point ( µβ , γβ ). In the first

experiment γ was set to its optimal value γβ and µ was
changed around µβ . In the second experiment µ was
set to µβ and γ was changed around γβ . Both plots
shown in Figure 1 were obtained by double averaging.
First, the mean-squared signal estimation errors were
computed for different pairs (µ, γ) and for a given fre-
quency trajectory from 10000 iterations of the algorithm
(after the algorithm has reached its steady state). The
obtained results were next averaged over 50 realizations
of {w(t)}, i.e. over 50 different frequency trajectories.
Note good agreement between theoretical curves and the
results of computer simulations.
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[|∆
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x10−3
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µ=0.032

µ
√
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Figure 1: Variance of the signal estimation error for a
single noisy cisoid with a random walk frequency drift.
The theoretical results (solid lines) are compared with
simulation results (×) for different values of µ and γ.
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