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ABSTRACT 

In this paper, we propose a new peak-to-average power ratio 
(PAPR) reduction algorithm for OFDM transmission. The 
algorithm is based on dynamically shaping the signal con-
stellation using a decision metric, and it does not require 
transmitting any side information to the receiver. Compared 
to other recently introduced PAPR reduction techniques 
based on constellation shaping, the proposed algorithm is 
very simple and does not involve any complex optimization 
procedures. Its performance is investigated using OFDM 
signaling with a QPSK signal constellation.  

1. INTRODUCTION 

The attractive features of Orthogonal Frequency Division 
Multiplexing (OFDM) have made this technique very popu-
lar for future wireless communications systems. But the 
attractiveness of OFDM may be outweighed by its handicap 
of having a large peak-to-average power ratio (PAPR) at the 
transmitter output. The PAPR problem of OFDM has been 
studied considerably and a number of techniques have been 
developed to reduce it.  

Possible peak power reduction techniques include cod-
ing, phase optimization and multiple signal representation 
[1]. Coding leads to satisfactory results, but it reduces the 
useful data rate, which is undesirable [2]. As an alternative, 
PAPR reduction can be achieved using phase optimization 
[3] or schemes relying on multiple signal representation, 
namely, Selective Mapping (SLM) and Partial Transmit Se-
quences (PTS) algorithms introduced in [4] and [5]. The 
main problem of these techniques is that they require the 
transmission of side information to the receiver. More recent 
attempts reduce the peak power by changing the signal con-
stellation, introducing new constellations, or inserting pilot 
signals either in unused subcarriers or over some or all of 
the used subcarriers [1], [6] and [7]. These techniques are 
very complex, however, as they use an iterative optimization 
procedure based on gradient search.  

In this paper, we propose a very simple scheme based 
on constellation shaping. Peak power reduction in the pro-
posed scheme is based on a simple metric calculation for the 
input symbols and does not need any optimization or itera-
tive search. Its performance was investigated by means of 

computer simulations and the discrete time-domain samples 
were considered for PAPR calculation.  

The paper is organized as follows: In Section 2, we give 
a brief review of OFDM together with the PAPR problem. 
Section 3 describes the proposed PAPR reduction technique 
based on constellation shaping. In Section 4, we present our 
preliminary simulation results using QPSK. Finally, we give 
our conclusions in Section 5. 

2. THE PAPR PROBLEM IN OFDM 

In OFDM transmission, the complex data symbol block a = 
(a0, a1, ….., aN-1) is passed through an N-point inverse fast 
Fourier transform (IFFT) to obtain the discrete time-domain 
samples to be transmitted. The transmitted signal samples 
can be written as 
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where i is the OFDM symbol index and i
ma  is the data sym-

bol transmitted over the mth subcarrier. For convenience, the 
symbol index will be omitted in the sequel. 

The data symbols (the ma ’s) are i.i.d. random variables, 
and from the central limit theorem, with a large number of 
subcarriers the time-domain samples at the IFFT output can 
be modeled as truncated Gaussian random variables with 
zero mean. Thus, most of the magnitudes will be small 
(close to zero), but a very small percentage of them will 
have a very large magnitude. This results in the problem of 
PAPR from which multicarrier systems suffer considerably. 

The PAPR of the time-domain sample sequence b = (b0, 
b1, ….., bN-1) is defined as 
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where ||·|| denotes the norm of the enclosed vector. 
In general, it is more relevant to consider the approxi-

mated continuous-time PAPR with oversampled signal val-
ues. The continuous-time PAPR can be approximated by 



employing the IFFT of the zero-padded input data sequence 
of length LN, where L denotes the oversampling rate. In this 
paper, we only investigated the case L = 1.  

3. SIMPLE CONSTELLATION SHAPING 

With the increasing popularity of OFDM, there have been 
numerous attempts to reduce the PAPR of this type of sig-
nals. Recently, the attention for PAPR reduction has been 
turned to schemes which tend to play with the constellation 
intelligently (see, e.g. [6], [7]). These techniques lead to 
large improvements compared to the previous ones without 
having to transmit any side information to the receiver. Con-
stellation shaping consists of modifying the transmitted data 
symbol values without affecting the minimum distance and 
consequently the system bit error rate (BER). Constellation 
shaping actually increases the transmitted average signal 
power, but this increase can be controlled and what is truly 
important is the peak power rather than the average power. 

In our proposed scheme, a metric is computed for each 
input data symbol which measures how this symbol contrib-
utes to the IFFT output samples with large values. More spe-
cifically, the metric indicates how much the peak values of 
the time-domain signal can be reduced by predistorting the 
symbol at hand without reducing minimum distance. The 
symbol metrics involve the magnitudes of the output signal 
samples nbnw =)(  and an appropriate measure of the angle 
between the output sample nb  and the contribution of symbol 

ma  to it, which is Nnmj
mea /2π . The angle measure used in this 

work is chosen as 

 )(),( nmCosmnf ϕ−= , (3) 

where nmϕ  is the angle between Nnmj
mea /2π  and nb . The idea 

here is to predistort a data symbol if this operation is likely to 
reduce the peak values of the output block. Note that the 
( )mnf ,  function has its maximum for πϕ =nm  and de-

creases monotonically around this phase value. Conse-
quently, a large value of this function indicates that 

Nnmj
mea /2π and nb  are almost in opposite phase and symbol 

ma  can be predistorted to reduce the magnitude of nb  with-
out reducing minimum distance and degrading performance. 
Once the metric is computed for all input symbols of the 
block, the symbols are sequentially predistorted in the de-
creasing order of their metrics. The procedure stops when the 
peak power at the IFFT output stops decreasing.  

The symbol predistortion technique adopted here in-
volves a simple expansion, as shown in Fig. 1(a) for the 
QPSK signal constellation. In this modulation, predistortion 
of a symbol ma  consists of transmitting maα , where α  is a 
real number greater than 1. This type of constellation shaping 
only scales upward the magnitude of the transmitted symbols 
leaving their phase unchanged. Fig. 1(b) shows the extension 
of this procedure to 16-QAM. In this case, the corner points 
of the signal constellation are expanded as in QPSK, while 
only the real or the imaginary part of the side symbols is ex-

panded in order not to reduce the minimum distance in the 
signal space. Note that the inner points of the constellation 
cannot be predistorted without degrading BER performance.  
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Fig. 1. Dynamic constellation shaping with scaling factor α : 
a) QPSK, b) 16-QAM. 

 
More generally, the same procedure can be applied to M-

QAM signal formats by appropriately predistorting the 
outermost constellation points. The choice of the scaling 
factor has a significant impact on the PAPR reduction 
performance of the proposed technique and may be 
optimized. In this paper, we determined a positive constant 
leading to the highest reduction of the average peak power, 
the averaging being made on OFDM symbols. 

The proposed algorithm involves five steps and can be 
summarized as follows: 

1. Obtain the output sequence b via IFFT of the input 
data symbol block a = (a0, a1, ….., aN-1). 

2. For each sample bn of the output sequence define a 
weighting function w(n), which is an increasing 
monotone function of its power. 

3. For each input data symbol am compute the decision 
metric:  
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where p and q are design parameters (with p odd). 

4. Determine the K symbols with largest decision met-
rics with the scaling factor α .  

5. Finally, for 1,,0 −= Nn K update the IFFT output as 
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where SK  is a set of size K whose elements are the indices of 
the expanded symbols in the input sequence. The number K 
is determined by observing the output peak power reduction. 
The peak output power is indeed reduced using the described 
procedure up to some value of K, but reduction stops at that 
point and increasing K beyond that value actually increases 
peak output power. The K parameter is accordingly selected 
such that peak power reduction is maximized, i.e., expanding 
any additional symbols increases peak power. 

Although determining the K parameter looks like an 
iterative procedure, no iterations are actually needed and the 
algorithm is a one-shot process. Indeed, for a given IFFT 
block size and signal constellation, the K parameter can be 
determined before hand by computer simulations and no 
iterations are needed in a particular implementation. 

Further improvements of this technique are possible 
through an optimization of the decision metric. Indeed,  the 

)(nw  and ),( mnf  functions in this work were selected arbi-
trarily, and better performance can be expected if they are 
optimized. Also, the number of subcarriers in this technique 
is a critical parameter which gives an increased flexibility 
and results in a larger reductions of the PAPR as it increases.  

4. SIMULATION RESULTS 

In this section, we investigate the performance of the pro-
posed scheme for QPSK signaling. In our simulations, we 
considered the complex baseband representation of the 
OFDM signal and we used N = 256 subcarriers. The results 
are obtained by averaging over 610  randomly generated 
OFDM symbols. The proposed scheme was applied when 
the PAPR is greater than 6 dB and the averaging is per-
formed over all trials. The design parameters p and q were 
taken as 1 and 6, respectively. Note that in PAPR 
calculation, the ratio of the peak power to the initial average 
power (before the application of the reduction algorithm) 
was taken into consideration. 

First, the scaling values and the number of symbols to 
be modified were determined. Then, the results were pre-
sented as the Complementary Cumulative Distribution 
Function (CCDF) defined as  

 ))(Pr())(( 2γ>= bb PAPRPAPRCCDF , (6) 

which indicates the probability that the PAPR of a symbol 
block exceeds the threshold level 2γ . 

Fig. 2 shows the change in the peak power as a function 
of the number of expanded data symbols with the expansion 
factor α  as parameter (solid-line curves). It also shows 
(dashed curves) the increase of the average signal power. We 
can see that the number of symbol predistortions which re-
duce the peak power is a function of the expansion factor. As 
can be seen on this figure, the optimum number of predis-
torted symbols is on the order of 20 for 2=α  and on the 
order of 50 for 3.1=α . The figure also shows that the larg-
est peak power reduction is achieved for 1.6α =  and 25 data 
symbols predistorted. For all values of α , the results indicate 
a reduction of the peak power by approx. 1.5 dB. 

 
Fig. 2. PAPR and average power vs. number of modified 

symbols for different scaling factors. 
 

Next, Fig. 3 shows the CCDF of the proposed scheme 
using the optimum α and K parameters. The solid-line curve 
corresponds to conventional OFDM without any compen-
sation and the dotted curve corresponds to the PAPR reduc-
tion technique proposed. These curves indicate that the im-
provement is on the order of 2.2 dB at the probability of 310−  
and of 2.7 dB at the probability of 510− .  

 
Fig. 3. CCDF of PAPR for conventional OFDM.  

and the proposed scheme. 
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5. CONCLUSIONS AND PERSPECTIVES 

We have introduced a simple PAPR reduction scheme for 
OFDM systems, which relies on constellation shaping. Spe-
cifically, the algorithm employs a simple decision metric for 
each input symbol that measures its contribution to the out-
put signal samples of large magnitude and indicates how 
much these samples can be reduced by upscaling the value 
of that symbol. The computational complexity of the pro-
posed algorithm is very low compared to other PAPR reduc-
tion techniques based on constellation shaping, because it is 
one-shot process and it does not need any complex optimi-
zation procedures. The algorithm was described for QPSK, 
but it equally applies to higher-level QAM signal constella-
tions using an expansion of the outermost signal points.  
Finally, additional improvements can be expected by intro-
ducing other cost functions in order to better select the sym-
bols to be expanded and also by extending this symbol pre-
distortion technique to the phase dimension.  
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