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ABSTRACT

In this paper, we present an algebraic description of the
aliasing phenomena evident in the linear sampling pro-
cess of multidimensional periodic band limited signals.
Opposed to the classical Shannon sampling, periodic
band limited signals underlie a different aliasing struc-
ture providing further freedom in the sampling strategy
due to the discreteness of the spectrum. An algebraic
formulation of the optimal sampling problem is also pre-
sented.

1. INTRODUCTION

If we consider the widespread use of FFT algorithms
in signal processing, it would not be wrong to say that
harmonic functions are the most important functions in
DSP. This evidently makes the sampling and quanti-
zation of them an important problem from a practical
and theoretical standpoint. In spite of their simplicity
in comparison with general signals faced in engineering
applications, the aliasing effects are strikingly different
than usual aliasing effects in non-periodic signals.

In this paper, we will mainly focus on sampling the-
orems and aliasing effects in multidimensional periodic
band-limited signals. Opposed to the classical Shan-
non sampling theorem for strictly bandlimited signals,
sampling periodic bandlimited signals is relatively differ-
ent. This stems from the discreteness of the spectrum.
The interpolation of such signals has been studied in
[1, 2, 3] however the authors do not discuss the alias-
ing structure. The interpolating function of periodic
band-limited signals is simply a periodic-sinc function
also known as the Dirichlet kernel [1, 4]. The Dirichlet
kernel is used to define half-integer representations for
finite operators [4]. As a complementary to the previous
work, we will focus on the aliasing phenomena in a very
general multidimensional case.

It must be noted that discreteness of the spectrum
gives us further freedom for choosing a suitable sam-
pling rate which can easily be below the Nyquist rate
[4]. Despite it is easy to decrease the sampling rates by
using Papoulis extensions, periodic band limited signals
do not need a modification in the sampling structure
[4]. If restated in an information theory context, all of
the information is contained in one period. In order to
represent the signal from its samples the same informa-
tion can also be collected from the other periods. This
is closely related with the discreteness of the spectrum.
It will be shown that the no-aliasing condition can be

stated compactly as:

r 1 6= r 2 mod N T (1)

which reveals the algebraic nature of the aliasing phe-
nomena and is a compact mathematical description of
the general sense that the pulses in the spectrum should
not overlap.

The main motivation for studying the sampling and
aliasing structure for periodic band-limited signals is the
fact that we face a relatively different aliasing structure.
In other words, by applying the ubiquitous theory of
sampling to these very simple harmonic functions, new
aliasing structures are faced and hence all the relevant
theories has to carefully be adapted to the structure of
the discrete spectrum.

Another important issue for both practice and the-
ory is the optimal sampling problem. For the continuous
case, it is very difficult to classify the optimal sampling
architecture for a given class of closed region in the plane
or in a higher dimensional space since this requires clas-
sification of surfaces in multi-dimensional vector spaces
which makes the problem extensively difficult. Even a
precise mathematical formulation does not exist to the
best of the author’s knowledge. However, for a small
class of regions eg. -bounded in a sphere in the dimen-
sion of the space-, it has been shown that the optimal
sampling geometry is hexagonal [5]. We will show that
in the discrete case it is possible to formulate the opti-
mal sampling problem in the most general case. This
will be achieved by formulating the aliasing phenomena
in an algebraic manner.

We will consider only linear sampling and the non-
linear sampling case will be discussed elsewhere.

2. SAMPLING THEOREMS AND
ALIASING

In order to obtain a sampling theorem and conditions
for aliasing, we shall follow the well known results from
multidimensional linear sampling theory [5]. However,
the aliasing structure will be treated differently than the
usual case where signals are assumed to be only band-
limited.

Bold lower case letters denote vectors and bold upper
case letter denote matrices throughout this paper. Let
fa be a strictly band limited multidimensional periodic
signal with fundamental period A .

fa( t ) = fa(t + Ar ′) (2)



In the above representation, r ′ denotes an integer valued
vector. Since the signal is periodic, it can be represented
with Fourier series as:

fa( t ) = fa(t + Ar ′) =
∑

r∈Na

cre
j2π(A−T r)T t (3)

In the above expression r is an integer valued vector
belonging to a finite set denoted by Na and cr denotes
Fourier series coefficients. Na is the set of r vectors for
which the Fourier series coefficients cr are nonzero.

The samples of fa are given as f(n ) = fa(Vn ) where
V is the sampling matrix. The discrete signal f(n ) and
the sampled signal fs(t ) are respectively,

f(n ) =
∑

r∈Na

cre
j2π(A−T r)T Vn, (4)

fs( t ) =
∑
n

fa( Vn )δ(t − Vn ). (5)

If we write these signals in transform domain,

f̂a( Ω ) =
∫

fa(t )e−j ΩT tdt

=
∑

r∈Na

cr2πδ(Ω − 2π A −T r ). (6)

In the above representations Ω denotes the radial fre-
quency. fs in transform domain is:

f̂s( Ω ) =
∫

fs( t )e−j ΩT tdt . (7)

The last equation can further be simplified by using the
well known results from multidimensional sampling the-
ory [5]:

f̂s(Ω ) =
∑
n

fa(Vn )e−jΩT Vn

=
1

| det(V )|
∑

k

f̂a(Ω − 2π V −T k )

=
2π

| det(V )|
∑

k

∑

r∈Na

crδ(Ω − 2π A −T r − 2π V −T k )

(8)

where the transition from the second line to the third
line is done by replacing f̂a with (6).

Up to now, we followed directly the well known re-
sults from the multidimensional sampling theory [5].
However, the conditions for aliasing has to be carefully
justified since that the last equation is simply a summa-
tion of delta functions. Hence, for perfect reconstruc-
tion, there must be no overlapping of the pulses. This
guarantees to avoid loss of information. However op-
posed to the non-periodic case, we have further freedom
in choosing the sampling rates since there are empty
spaces between the pulses. On the other hand, we must
be careful on the intersections.

In order to avoid aliasing, there must be no overlap-
ping of the pulses in (8). This can be achieved if and

only if for all combinations of r 1 ∈ Na and r 2 ∈ Na and
k such that r 1 6= r 2 the following inequality is satisfied

2π A −T (r 1 − r 2) 6= 2π V −T k (9)

It must be noted that r 1 ∈ Na and r 2 ∈ Na take finite
values opposed to k which can take all the nonzero in-
teger valued elements. It is easy that this statement is
necessary and sufficient for no-aliasing.

Note that in general while sampling harmonic func-
tions, the condition for no-aliasing (9) does not guaran-
tee the periodicity of the samples f(n ). We can obtain
non-periodic samples from a strictly periodic signal [4].
Indeed, if the sampling matrix V is chosen such that
A −1 V has at least one element being irrational, the no-
aliasing condition (9) will always be satisfied. This also
gives non-periodic samples from a periodic signal. Since
this case is not very significant for the practical cases,
we shall prefer the samples

f(n ) =
∑

r∈Na

cre
j2π(A−T r)T Vn (10)

to be also periodic. This can be achieved if and only if
we choose V such that

A −1 V = N −1 (11)

is satisfied where N is an integer valued invertible ma-
trix and denotes the periodicity of f(n ). For notational
brevity periodic f(n ) will be replaced with f [n ].

f [n ] = f [n + N ] =
∑

r∈Na

cre
j2πrT N−1n (12)

The last equation is the discrete Fourier series represen-
tation of the periodic samples. If the sampling rate V is
chosen such that equation (11) is satisfied, the condition
for no-aliasing in equation (9) can be written as:

2π A −T (r 1 − r 2) 6= 2π A −T N T k (13)

which can further be simplified as:

(r 1 − r 2) 6= N T k , ∀r 1, r 2 ∈ Na, r 1 6= r 2,∀k , (14)

Finally, this statement can be formulated simply as:

r 1 6= r 2 mod N T ∀r 1, r 2 ∈ Na, r 1 6= r 2 (15)

This result, as expected, is brief however, for the multi-
dimensional case it is difficult to test whether for a given
r 1, r 2 and N the condition r 1 6= r 2 mod N T is satisfied.
Nevertheless, the no-aliasing expression in equation (15)
is a compact mathematical description of the general
sense that the pulses in the spectrum should not over-
lap.

3. OPTIMAL SAMPLING

The number of samples in one period and and the sam-
pling density can be related to each other by using equa-
tion (11):

| det N | =
|det A |
|det V | (16)



Hence, minimizing the sampling density and minimiz-
ing the number of samples in one period are equivalent
problems.

A necessary condition for no aliasing is:

| det(A )|
| det(V )| ≥ number of elemnts of the set Na (17)

which is a statement of the minimum number of degrees
of freedom. It is easy to see that there exists also an
upper bound for the determinant of N . However since
the number of matrices having a fixed determinant N
are infinitely many, we can not directly adopt a brute
force approach for the optimization.

In general, the optimal sampling problem is reduced
to integer optimization:

min | det N | (18)

r 1 6= r 2 mod N T , r 1, r 2 ∈ Na (19)

This optimization is desirable since we want to represent
the signal with as few as possible samples and minimum
sampling density. Although we do not yet provide a
solution to this optimization problem, note that in the
non-periodic case it is extremely difficult even to state
the optimal sampling problem. Furthermore this opti-
mization only minimizes the sampling density, however
this might be achieved by a very dense sampling in one
dimension and very coarse sampling in other dimensions.
Such solutions are optimal however it does not seem very
practical to use very dense and coarse sampling rates to-
gether. Nevertheless it must be noted that the stated
optimization problem is not standard and is with great
possibility very difficult to solve.

4. FUTURE WORK

The main motivation of this paper was to reveal the
algebraic structure in the sampling process of periodic
bandlimited signals. Reconstruction and interpolation
from the samples will be published elsewhere.

It is very interesting from both theoretical and prac-
tical perspective whether the the presented formulation
of the optimal sampling problem can be extended to a
restricted class of non-periodic band-limited signals or
periodic but non band-limited signals.

The algebraic structure of the optimal sampling
problem and its connection to modules will be published
elsewhere.

5. CONCLUSION

In this paper, we studied the aliasing phenomena in
the linear sampling process of multidimensional periodic
band-limited signals. We provided an algebraic formula-
tion in order to handle the discreteness of the spectrum.
Based on this formulation it was shown that the op-
timal sampling can be formulated as nonlinear integer
programming.
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