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ABSTRACT

The challenges a real-time embedded designer faces in a new prod-
uct design can be summarized as : Time-to-Market, Real-Time
Performance, Quality, Cost, Scalability and Development Tools.
This paper discusses Real-Time Performance challenges and pre-
sents some practical and important techniques used in Nortel Netas
products to overcome these challenges. The focus will be on DSP
and RISC architectures.

This paper is organized as follows :
*  Real-Time System Definition
»  Customer and Technology Requirements
*  Choosing The Right Architecture For The Solution
»  Design Considerations For DSP and RISC
*  Applications In Nortel Netas Products

1. REAL-TIME SYSTEM DEFINITION

When we say real-time system, in fact we are emphasizing a system
with deadlines, some of which are critical while some are really
vital. So the main and very simple difference between a real-time
system and a non-real-time system can be phrased as “The correct-
ness of the result of a computation is also a function of time in real-
time systems”, where the same is not always necessary for non-real
time systems. In other words, the correct result of a computation at
wrong time is accepted as incorrect or useless for a real-time sys-
tem. An example : If the signal sent by the park sensor of a car is
processed later then required, then the car will crash the wall. No
matter how accurate the sensor information in meters is, it is useless.

2. CUSTOMER AND TECHNOLOGY REQUIREMENTS

The first step for a designer is to clearly understand and determine
the requirements of the customer. Also there may be missing re-
quirements which customer can forget or can not declare. These
must be informed. After clarifying all the requirements, then the
technology for the solution should be decided. Sometimes the cus-
tomer can dictate the technology like, “ATM in the backbone or
ADSL at the subscriber line” etc. When the customer does not an-
nounce the technology, the designer should do it instead. And at
last, the designer should also consider possible potential features the
customer most probably will request later in the future. The design
should be able to meet some of these future requests, at least without
requiring any change in the existing H/W.

Now we can cover all the requested features and some potential
future features. It is time to choose the right architecture.

3. CHOOSING THE RIGHT ARHITECTURE FOR THE
SOLUTION

Today, there are different alternatives for the embedded designer to
choose from. The most popular ones are : ASIC, FPGA, DSP,
RISC, CISC and Network Processors. All have advantages and
disadvantages depending on the solution. We will not discuss those
in detail in this paper. But in summary, the designer must take the
facts listed below, into consideration :

Common to all types :
¢ Cost/ Performance
¢ Time-to-market : Instant availability or in the roadmap
e Scalability

ASIC and FPGA :
. Size
* Internal constant and variable delays
. Internal usable blocks : ram, timer, PLL

For DSP, CISC, RISC :

*  Maximum addressable Program and Data Memory size.

*  Memory Management : Memory Protection & Transla-
tion.

*  Program and Data Cache availability and the size.

e Speed : Operating frequencies.

e Architecture : Multi core, Super Scalar, Pipeline Stage,
Floating Point Unit etc.

*  Internal Memory : Zero wait cycle ram accesses , size

*  Exception Reporting : Very important for bug tracing

*  Interrupt controller : Interrupt latching, priority resolving,

interrupt nesting.

« DMA : Efficient data move between peripherals and/or
memory.

*  Timer : For generating periodic interrupts & events and

precise measurements of critical code.

. External I/F : Bus width, bus clock.

«  External I/F Supported devices(SRAM, SDRAM,
SBSRAM, DPRAM)

. External I/F : Additional wait state insertion, external
ready logic for slow devices and multi master shared ram
configurations.

. Internal units like ATM, Ethernet, HDLC, DES Encryp-
tion, I12C, SPI, UART etc.

Determining the right architecture is not an easy task actually. For
that, simulators or more costly but more realistic, an
EVM(Evaluation Module) will probably help a lot. If it is seen that
the processor suffers, then the architecture can be changed to a dif-



ferent or faster version immediately or it is totally changed. The
earlier the deficiency of the architecture is seen, the better. After a
moment in the design phase, it will most probably be impossible to
change the processor or architecture.

4. DESIGN CONSIDERATIONS FOR DSP AND RISC

During the phase of architecture selection, the hardware design
of the card, backplane or maybe the whole system must also be
taken into consideration. Surely, just considering the processor only
is not enough for the selection. All the interfaces, communication
paths with other cards and processors, function specific chipsets on
the card, H/W limitations, bottlenecks in the system and specific
requirements of the H/W must also be taken into consideration. To
make it clear, let’s give an example: We design a board having
400MIPS DSP or RISC processor and a slow device of 1us access
time. Assume that, this slow device will be accessed every Sus
which ends up with 20% real time performance spending for this
process. And if this periodic process is not the main process of the
processor, then we must conclude that, we have a 320MIPS proces-
sor for the main process instead not 400MIPS as we selected.

The considerations during design and implementation phases
are presented below.

4.1 Processor Data Bus

Unless otherwise needed, use the full width of the processor data
bus and connect the fastest RAM chips the processor interface sup-
ports. Sometimes, power consumption, size and layout of the board,
reflection and crosstalk issues brings some limitations for these
interfaces. This is an important decision for the design which di-
rectly affects performance. So it must be strictly decided in the be-
ginning phase. If this can not be determined exactly, then the real-
time assumptions must be done for the worst case.

4.2 Shared / Multi Ported RAM

If there are more than one processor on the card, their access to
shared resources must be minimized. RAM is one of the most com-
mon resources between processors in multi processor designs. RAM
is frequently used for data flow between the processors. The RAM
between these processors can be designed in two ways : Shared
Ram or Dual Ported Ram.

If shared ram design is used, most probably an arbitration logic
should be included to control the accesses of processors. One will
access the shared ram while the others will be frozen by external
READY delayed cycles. So, the other processors are hang during
the winner accesses the shared ram. DPRAM or Multi Ported RAM
is better, but a little bit expensive way to overcome this problem.
The arbitration logic is embedded in the RAM device. Unless the
same location in the DPRAM is accessed, no requester’s cycle is
delayed. So, both sides access DPRAM in parallel without wait
states.

4.3 Internal RAM usage

Most of the DSPs today have internal memory available. But the
size of this memory is not sufficient for most of the applications. So
the most critical codes, like interrupt routines or signal processing
algorithms must be located in internal RAM region while less criti-
cal code like configuration, management or performance monitoring
can be located in external RAM regions.

4.4 H/W interrupts

H/W interrupts are presented to the processor by external signals.
Some processors have internal units like timers or DMAs which
also generate signals to the core internally. When designing with
H/W interrupts, the following details must be considered :

¢ How frequent will this signal be generated.

*  Should this signal be edge or level sensed.

«  Ifan interrupt is missed somehow, how will this be recov-
ered.

e What should be the maximum tolerable interrupt latency.

e  What should be the maximum interrupt service routine
execution time.

*  Every interrupt means context save & restore overhead.
According to the architecture, the size of the saved con-
text(registers, MMU tables) differs.

e Can this overhead be reduced by grouping the signal of
this interrupt by other interrupt signals.

e Is the interrupt code as small as it can be locked to cache
when extra performance becomes vital.

e Is there an interrupt controller for priority resolving or
will it be implemented in S/W.

* Isitneeded to nest interrupts according to priority.

e Is it needed for the interrupt to be able to preempt itself.
This is rarely needed and applied for catching very critical
interrupts.

e Is NMI needed. NMI can be very useful to signal just be-
fore the H/W generates a hard reset caused by watchdog
period expiration.

4.5 Multi Bus Processors

Some DSPs and RISC processors have more than one bus for ac-
cessing memory and peripheral devices. The processors today,
mainly the ones called Communication Processors mostly have
more than one execution unit that can access external memory or
peripherals. These processors can have more than one core in the
same package, an additional RISC responsible for implementing
communication protocols like ATM, Ethernet, TDM and addition-
ally a powerful multi channel DMA engine. These units can mostly
operate parallel unless a resource conflict occurs. So they can re-
quest access to external memory at the same time. In order to utilize
best performance of multi bus structures, the connected devices to
the busses should be organized carefully. As an example, a very
slow device should not be connected to a bus with high speed
SDRAMs. Otherwise, for example, when the DMA transfers data
from/to this slow device, the core will be blocked. So this will not
be a good practice. Better way is to connect it to the other bus and
organize the other peripherals around the same philosophy.

Also the data structures should be organized in such a way, as
to minimize resource conflict between multi units in the processor.
An example : If you have a processor with an ATM controller in-
side, then locate the ATM cell buffers to the bus other than the bus
the program and data are located at. By this way high rate ATM
traffic will not stall core execution.

4.6 Slow Device Interface

Although the technology today brings GHz speeds into the embed-
ded market, still there are and will always be slow devices like ex-
ternal UARTSs or Flash EPROM and we will always be obliged to
access them. So if it is possible, we should design in such a way as
to pipeline the operations. As an example, when the processor wants
to program flash EPROM according to EPROM’s FSM(Finite State
Machine), it is not a good design to wait for the EPROM to ac-
knowledge the operation. It is better to do other jobs during this



process and then check it periodically or be invoked by an interrupt
generated based on EPROM condition signals. (moderate flash word
programming is about 100ps, flash erase is about 2-5s which is a
deadly period for 500Mhz processor having 2ns cycle time).

4.7 Maximum Cache Utilization

Most of the processors today include internal program and data
cache of approximately 16-32K each. Some implement direct
mapped caches while others implement 2 or 4 way set associative
caches. And almost all of them implement LRU(Least Recent Used)
algorithm for aging cache lines. The theoretical best practice is to
lock all the code to program cache and all the data to data cache and
operate at the clock speed. But unfortunately, caches are too small
for the whole code and data to fit in. So what a software designer
must do, is to minimize the cache misses as much as possible. The
caches operate using two main principles : spatial locality & tem-
poral locality.

Spatial locality means, if a memory location is accessed, then most
probably a neighboring location will also be accessed. So it is wise
to cache these extra locations also. This is accomplished by caching
the whole line size of 32 or 64 bytes. Temporal locality means, if a
memory location is accessed once, then it is most probably that this
memory location and its neighboring will again be accessed in a
period of time, which leads to LRU aging algorithm.

These principles in mind, some methods for cache utilization are
listed below :

»  Try to use arrays instead of separate variables for utilizing
spatial locality. Separate variables can easily be mapped
to different memory locations for alignment and perform-
ance criterions by today’s highly optimized compilers.

*  Try to use loops as much as possible for temporal locality.

»  If appropriate, disable interrupts around loops. Otherwise
when the interrupt occurs, interrupt service routine code
will be cached and loop code will be invalidated.

» If there are function calls from the loops, this will most
probably invalidate the loop code. So try to divide loops
into smaller loops. Accumulate results in a stack array and
call function once with this array pointer. Organize the
called function also as a loop, executing on the array
passed as function parameter.

*  Dividing loops also helps. Because the smaller the loop is,
the more possibility it will fit into cache and achieve high
cache hit rate.

4.8 Maximum DMA Utilization

Most of the processors have DMA engines inside as separate units.
Some has one to six independent channels while some others can
have 64 independent DMA channels. Try to utilize as much as pos-
sible from these engines. DMA is very useful for three reasons :

*  Moving bulk of data between memory or peripheral in the
background. (Highly utilized in Nortel Netas products)

*  Read/Write data to/from peripheral on synchronous or
asynchronous events in the background while the core is
busy with other jobs. (Highly utilized in Nortel Netas
products)

*  Highly complex DMA engines can organize data in dif-
ferent formats which is very useful for serving multi chan-
nel TDMs for speech codecs.

4.9 Maximum Register Utilization

When writing in ‘C’, try to use stack variables instead of accessing
directly to variables or structures in RAM. This way the RAM vari-

ables are read only once and then referenced as stack variables, so
no more memory accesses. Most of the execution will go through
registers. The compilers today try to allocate core architecture regis-
ters for stack variables as much as possible. If there is lack of regis-
ters, then actual stack memory is allocated. Although some of the
compilers today are so intelligent that they can manage this, some-
times a little help to the compiler is will be helpful.

S. APPLICATIONS IN NORTEL NETAS PRODUCTS

The design considerations and techniques described above are
highly used in products we design. Below, some of our products are
given as examples, emphasizing these techniques.

5.1 ATM Cell Mapping to 64Kbit/s TDM :

We designed an APCO-25 compatible switch, which implements
the RFC(Radio Frequency Controller) and RFG(Radio Frequency
Gateway) functional blocks of the standard definitions. Switch
interfaces to the base stations with 2Mbit/s ATM E1 links. And
over these links, ATM cells carry 4.4Kbit/s IMBE(Improved Multi-
Band Excitation) coded speech parameters, encryption parameters
and some other radio channel and base station related parameters.
The switch should transport these ATM cells to a black-box inter-
facing with BRI(2B+D). As the PCM is synchronous and the ATM
is asynchronous, we had to map these ATM cells to TDM using
X.30 framing. We designed a card interfacing to the ATM
Bus(155Mbit UTOPIA-II) and the PCM Bus(2Mbit/s TDM) of the
switch backplane. Motorola MPC8260-200/166/66 is used as the
host processor and 5xTMS320vc5416-160 are used as the X.30
mappers. One DSP is capable of mapping 8 channels. ATM con-
troller of the 8260 is interfaced to the ATM Bus of the switch. DSP
side and the host side are interfaced to each other through high
speed dual ported RAMs. The ATM traffic coming into 8260 is
routed to DPRAMs. The DSPs read the cells from DPRAMs and
map them to X.30 framing. We used the same DMA technique
described in section 5.4 . The period of mapping an ATM cell to
X.30(10byte frame) is 11ms. We did not used 11msec samples for
DMA but 3.750ms samples. This decision was a result of maxi-
mum CDV(Cell Delay Variation) requirements.

5.2 Radio Signal Receiver Voter — Comparator

The APCO-25 Switch referenced in 5.1 is also responsible for In-
ter-BS handover. The radio speech signals received are encapsu-
lated in ATM cells and sent to the switch. According to the cellular
coverage principles, there are receivers operating at the same fre-
quency. As a result of this principle and implementation, the switch
receives replicas of ATM cells from different BSs, carrying the
same speech samples. Makes a decision based on RSSI(Received
Signal Strength Indicator) value which is measured and inserted
into the cell at the receiver, then clones and distributes these
replicas to the transmitters of the same channel back. We designed
a card having very powerful DSPs dedicated to this job. We
selected Texas TMS320c6416-500Mhz which has UTOPIA-II
direct interface to our ATM Bus. One DSP is responsible for 160
channel receiver voting and distribution.

The challenges according to system design were :
¢ Around 6Mbit/s ingress & egress traffic to/from DSP
should be handled at ATM layer.
*  Selected cell should be cloned and modified according to
destinations.
e 160 channel processing with CDV constraints.
Our solutions were :
*  We did not want UTOPIA peripheral send interrupt to the
core for every cell received or cell transmitted. The core



would already be busy with 160 receiver voting channels,
trying to minimize ATM traffic reshaping and optimizing
CDV. So we had to find another way for driving UTOPIA
cell traffic. We utilized 6416 DMA. 6416 has a very effi-
cient and well designed DMA engine, which Texas call it
EDMA (Enhanced DMA). EDMA executes 64 independ-
ent channels at the half clock rate of the core clock, in our
case 250Mhz. And these channels run over a dedicated
parameter structure located in the parameter RAM, which
can be modified on the fly by both the core and the
EDMA itself. We utilized this ability and designed an
EDMA micro engine consisted of 7 EDMA channels for
receiver and 7 EDMA channels for transmitter. What up-
per layer S/W does is, just to supply ATM cell buffers to a
pointer queue and poll the status from a status queue.
When the UTOPIA peripheral generates an event of a cell
arrival, this micro engine invokes, reads the current ATM
cell buffer pointer from the queue and moves the cell to
this buffer and at the end signs the status queue for a new
cell arrival. So the upper layer can be aware of a cell arri-
val. If the queue is full, the cell is automatically discarded
by this micro engine. The TX side also runs similarly.

*  We decided that, bulk cell copy is a burden for the core.
So we again designed EDMA micro engines, which uses
a similar queue for destination cell buffer pointers and
source cell buffer pointer. The upper layer supplies the
destination pointers and source pointer, then invokes the
micro cell copy engine, then execute other jobs. When the
copy finishes the EDMA interrupt the core.

*  We fitted all the code and data into 1Mbyte internal
memory and used all the optimization techniques de-
scribed in this paper. We also utilized an optimization
scheme which the DSP architecture provides; Texas calls
it “Software Pipelining”.

5.3 Tactical ISDN Terminal DTE V.24 & X.21 I/F :

We designed a Tactical ISDN Terminal with a DTE I/F for V.24
and X.21. The I/F supports rates of 1.2 to 64Kbit/s for synchronous
and 1.2 to 38.4Kbit/s for asynchronous. The control line activities
are sensed by a CPLD which signals the host CPU : Intel 80186.
The data lines RX/TX are connected to the McBSP(Multi Channel
Buffered Serial Port) of TMS320c5416-120 and the McBSP is
serviced by the DMA for both directions. The data received from
the DTE side is mapped into X.30 frames to be carried through
2B+D ISDN I/F to the network.

The challenges according to system design were :

*  According to V.24 standard for asynchronous communi-
cation, the DTEs communicating through the network
may have a rate difference up to 25% of the baud rate.
This must be tolerated by adjusting the stop bit size by the
same amount.

Our solution was :

*  We sampled the line at a rate of 16 times faster than the
actual transfer(baud) rate. So the bit value ZERO and
ONE are sampled as “0000000000000000” and
“I111111111111111” respectively. If a need for stop bit
adjustment arises, the number of the ONEs is decreased
according to the difference. Ex: if 12,5% rate difference
is needed 14 ONEs is pumped to McBSP for stop bit.

5.4 Tactical PBX Voice Mail Feature

We designed a card for our Tactical-PBX for record and playback
voice mail. This card should also be compatible with cost, reliability

and environmental condition requirements dictated by the specifica-
tions. The speech signal is encoded by G.723.1(6.4Kbit/s) and re-
corded to flash EPROM. During playback, G.723.1 parameters are
read from flash EPROM, decoded, converted to A-Law and pumped
to PCM. Texas TMS320vc5416-120 DSP and Intel 16Mbit flashes
are used.

The challenges according to system design were :

e DSP must handle 4 channel encode and 8 channel decode
simultaneously.

e 4 channel encoded data must be written to flash which is
partitioned as 1Kbyte sectors. 8 channel decode data must
be read from these flash sectors. And all these should be
handled simultaneously.

¢ During the record & playback operations ongoing, record
deletion must be handled simultaneously.

* Deleted flash sectors can not be written again,
unless the block including the sector is erased. So a
defragmentation task is running in the background
moving sectors to other blocks, organizing records
and erasing flash blocks.

Our solutions were :

. We used two DMA channels of TMS320vc5416, one for
transmit(8 decode) and one for receive(4 encode) as 240
sample pumper and 240 sample collector respectively,
from/to McBSP. By this way, the core is interrupted once
only every 30msec. Otherwise, every 125us the core
should handle 12 interrupts, more critically, as the length
of a timeslot in 2.048Mbit TDM is 3.9us, our deadline
would also be 3.9us.

e Programming flash is around 100us per word and read is
around 200ns. The core should not wait flash for 100us.
We designed a flash driver layer executing a FSM which
orders, preempting and reports the program/read/erase re-
quests from upper layers. When the request is completed
the requester is informed.

e The flash driver is designed in such a way that, a fast read
operation preempts a long programming or erase opera-
tion using flash EPROM commands like SUSPEND.

. We divided flash blocks of 64K each to 1K sectors, which
can store approx. 1s coded speech parameters. But when a
record is deleted, the sectors are signed as deleted(for
state modification in flash sectors, we utilized the rule
“flash programming is in fact zeroing the ones”.Ex :
full state = OxFFFF, deleted state = OxFFFE, defiag
state = OxFFFC. Zeroing the rightmost bits in order) and
these sectors can not be programmed again. So we de-
signed a defragmentation background task, which con-
tinuously checks the deleted sectors in a block and if the
percentage of the deleted sectors of the block exceeds the
threshold, move used sectors to the spare block, erase the
moved block and make it the new spare block.
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