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ABSTRACT 

 
A new recursive-search based motion estimation 
algorithm has been proposed that uses only a maximum of 
seven candidate motion vectors. The coding quality in 
terms of signal to noise ratio and compression is quite 
close to full search motion estimator. The algorithm is 
extremely light with respect to the computational load. 
Proposed algorithm improves upon the original three-
dimensional recursive search (3DRS) algorithm that is 
well known as a high performance motion estimator. 
Results obtained from various test sequences indicate 
around 50% improvement in computational load over the 
conventional 3DRS estimator. Simultaneously, the 
technique provides about 8% improvement in the coded 
bit-rates. The convergence behavior of our improved 
algorithm towards variations in the motion vector field is 
also superior. 
 

1. INTRODUCTION 
 
Motion Estimation is the heart of video coding process 
and always requires great attention for attaining low bit 
rates with low computational load. For real-time systems, 
several faster approaches other than Full Search Block 
Matching have been proposed and utilized [1 - 6]. Among 
these, the techniques that best offer a good compromise 
between the coding quality and complexity are the 3-D 
Recursive Search (3DRS) [1] and Fast Diamond Search 
algorithms [3]. Our proposed algorithm improves the 
3DRS technique to further reduce the computational load 
and improve compression. The original 3DRS algorithm 
is described in section 2 and the improvements are 
delineated in section 3. Performance results are tabulated 
in section 4. This is followed by conclusions in section 5. 
 
 
 
 

2. EXISTING ALGORITHMS FOR RECURSIVE 
MOTION EXTIMATION 

 
The seminal 3DRS motion estimator [1, 4] uses a small 
number of candidate vectors to find the motion vector of a 
macro block. Also, with the inherent smoothness 
constraint, it yields very coherent vector fields that closely 
correspond to the true motion of objects.  

In block matching motion estimation algorithms, a 
displacement vector D(X, n) is assigned to the center  
X=(Xx, Xy)T of a block of position B(X) in the current field 
n by searching a similar block in the previous field n-1 
within a search area SA(X) also centered at X. The latter 
block has a center that is shifted with respect to X over the 
displacement vector (the motion vector) D(X, n). To find 
D(X, n), a number of candidate vectors C are evaluated 
using an error measureε (C, X, n) to quantify block 
similarity. Let block B(X) be centered at X and is of size 
M*N. The displacement vector D(X, n) resulting from the 
block matching process is a candidate vector C that yields 
the minimum value of an error function ε (C, X, n), 
simply referred as ε (C). Mathematically, 
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The most popular choice for the error function is Sum 
of Absolute Difference (SAD) criterion: 
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The 3DRS algorithm tries to reduce the search strain 
by choosing a limited amount of candidate motion vectors 
(MV) based on the motion vectors found previously for 
neighboring blocks in the current and previous frames. 
These blocks are shown in figure 1.      

The candidate set CS(X, n) consists of five vectors: 
three predictor vectors from spatio – temporal 
neighborhood and remaining two vectors are obtained by 
adding a random update to motion vector estimated for 



previous block. Such a selection implicitly assumes 
spatial and/or temporal consistency and is given below in 
equation 3: 
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Here the vectors Ua(X) and Ub(X) are short and large 
random update vectors with elements having integer 
values in the interval [-3, +3]. Some offshoots of the 
standard 3DRS algorithms have been proposed such as [4] 
in which further compression improvement of up to 20% 
has been reported but at the expense of increasing the 
number of candidate motion vectors to thirteen from five 
candidates as employed in the original 3DRS. This results 
in a corresponding increase in the computation load. 

 
3.   PROPOSED ALGORITHM 

 
Our proposed algorithm enhances and improves the 3DRS 
algorithm [1, 4] in several ways. Firstly, the search for the 
best motion vector is split in two stages: an original 3DRS 
algorithm like stage followed by a local refinement stage. 
This improves the convergence property of our algorithm 
compared with the 3DRS algorithm. Section 3.1 covers 
this aspect in more depth. Secondly, to enhance the speed 
of our algorithm, we propose certain shortcuts in the 
motion vector evaluation processes. These are explained 
in detail below in section 3.2. These checks enhance the 
speed of our algorithm without any compromise on the 
compression efficiency of the algorithm. Thus, in total we 
evaluate seven candidate vectors but with a higher speed 
than the five candidates evaluated in the original 3DRS 
algorithm. 

 
3.1 Motion Vector Search Strategy 
 
Our improved 3DRS algorithm is based on a set of seven 
candidate vectors evaluated in two stages. In the first 
stage three carefully chosen candidates from the 
neighborhood of the current block are evaluated. Let X = 
(Xx, Xy) T be the coordinates of the current block. Our 
proposed algorithm first estimates the motion vector D1(X, 
n) such that: 
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In this spatio-temporal candidate vectors set used for 
the first stage, Cs1 and Cs2 are available for the current 
frame and CT1 is available from the previous frame. We 
have not included the random updated candidate vectors 
as against the 3DRS algorithm and its offshoot approaches 
previously proposed [1, 4]. We instead employ a second 
refinement stage as explained below. 

 

 
Figure 1: Neighbour of B(X) that are used to derive three 
candidate motion vectors for the improved 3DRS algorithm and 
hence for second stage refinement 

 
In the second stage motion vector refinement process, 

short diamond search is applied over D1(X, n) found at the 
first stage at one pel offset. This yields the fine refinement 
of the motion vector D1(X, n) selected in the first stage. 
The set of four spatial candidates of the second stage 
Short Diamond Search around the best matching motion 
vector D(X, n) is given as: 
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where ),,()( nXCC εε =   
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This second stage refinement helps in two ways. 
Since it selects the best candidate from the candidate set 
of predicted motion vectors and then refines it to get a 
better match for the current macroblock, the chance of 
finding a better match is increased. Moreover, the second 
stage refinement also helps to get a faster convergence of 
the recursive algorithm because a more accurate motion 
vector for the current macroblock also serves as a better 
predictor for the succeeding macroblock.  

Note that the stated algorithm is somewhat modified 
at the edges of the frame. Blocks at the borders of the 
frame have fewer surrounding blocks. The non-existing 
blocks are clipped to the nearest existing blocks. For 
example, the MV of block (0, -1) is used instead of that of 
(-1, -1). Also MVs pointing outside of the frame are 
clipped to the nearest border position.  

The candidates set for 3DRS algorithms may have 
more than one common motion vectors. Our algorithm 
obviates the need to evaluate them again. This results in a 
load reduction without any degradation in quality and 
video bit-rates. 

 
3.2 Further Improvements in Motion Vector 
Computation  

 
Evaluation of duplicate motion vectors in the candidate 
set is avoided. This saves considerable motion estimation 
time since such duplications exist frequently in the 
candidate set. Full computation of SAD for each and 
every candidate motion vector is also avoided by saving 
the minimum SAD ( minSAD ) found until this stage. 
While SAD is under computation, by accumulating the 
pixel value differences row by row for the current 
macroblock, its intermediate value at the end of each row 
is compared with minSAD . If the intermediate value 
exceeds minSAD ; further computation of SAD for this 
candidate is meaningless and is therefore aborted. 

During motion estimation, sometimes it is possible to 
find a very good match at an early stage. We have also 
exploited this fact to speed up motion estimation.  If a 
certain candidate yields SAD value (ε (C, X, n)) lower 
than a certain threshold THLWSAD _ , further motion vector 
search is aborted and the candidate C  being evaluated is 
directly selected as the final motion vector for the current 
macroblock. The value THLWSAD _ was determined 
through intensive testing.  
 
3.3 Better True Motion Vectors Generation with Half 
Pel Refinements 
 
We have also implemented Half-pel refinements in both 
algorithms. The inherent constraint of traditional 3DRS is 

its slow converging motion vectors, which results in 
deviation from true motion vectors [1]. We have 
addressed this problem through the use of small diamond 
search and apply further improvements by the use of half 
pixel precision based motion estimation algorithm around 
the best matched motion vectors of 3DRS. This helps in 
convergence to true motion vectors. Figure 3 depicts these 
results. 
 

4. EXPERIMENTAL RESULTS 
 

To evaluate the performance of our algorithm, we have 
applied our algorithm and reference 3DRS algorithm on 
different video sequences in QCIF resolution. The results 
are elaborated below. 

 
4.1 Motion Estimation Performance Results 

 
Figure 2 shows better convergence performance in 
recursion process in the case of Coastguard video 
sequence compared with the original 3DRS algorithm. 
The graph shows the number of ‘Inter’ coded blocks. 
Larger Inter coded blocks per frame implies the success of 
the motion estimator in finding more numbers of 
acceptable matching blocks in the previous frame leading 
to coding of more blocks in the current frame as ‘Inter’. 
The Coastguard graph also depicts that from frame 65 to 
80, the reference 3DRS shows discontinuous behavior as 
compared to improved implementation. Our algorithm 
thus converges to true motion vectors and hence results in 
lower bitrates. 
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  Figure 2: Convergence Performance in ‘Coastguard’  
 
4.2 Computational Load, Compression and True 
Motion Vectors Generation Results 

 
Superior performance of our proposed algorithm is clear 
from Table 1 that quantifies the improvement in bit-rates 
and loads of our algorithm with respect to the original 
3DRS algorithm. The SNR remains virtually the same. 
There is a reasonable reduction of 2% to 8% in bit stream 
sizes especially for moderate motion scenes. The load 



reduction compared to 3DRS is 41-51%. This is due to the 
optimizations earlier suggested in section 3.2. Load 
performance results for various QCIF sequences are 
shown in figure 4. 

 
Table 1: Performance comparison of the improved 3DRS 
and original 3DRS algorithms with half pel refinements 

 
 

Scene 
Computation load 
improvement over 

3DRS (%) 

Bit stream size 
improvement over 

3DRS (%) 

Coastguar 44.1 7.6 
Foreman 41.4 5.8 
CarPhone 44.3 2.2 
Akiyo 51.4 1.7 
 
We have also analyzed motion vectors for our improved 
search strategy and the reference. Here, it was observed, 
as depicted in figure 3, that our algorithm gives better true 
motion vectors. Even for minute motion that is not 
detected by the reference implementation, our algorithm 
results in further macroblock matches.  
 

 
Figure 3: Motion vectors for improved and reference frames  
 
5.  CONCLUSIONS 
 
Three dimensional recursive search algorithm and its 
derivatives have been shown to perform good motion 
estimation with reduced computational complexity. We 
have introduced further improvements in original 3DRS 
algorithm that result in an even faster motion estimator for 
standard video codecs at low bit-rate. The compression 
performance of proposed algorithm has been found to 
show an improvement of 2% to 8%. The computational 

complexity has shown a reduction in load of around 50%. 
The proposed algorithm is thus extremely useful for real-
time video processing and implementation on a general-
purpose computer. 
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Figure 4: Actual average loads in MHz for different sequences  
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