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ABSTRACT 

This paper investigates the effect of incorporating normali-
zation of the eigenvectors between iterations in the PAST 
and RP algorithms for principal component analysis (PCA). 
In addition, an algorithm denoted as exact eigendecomposi-
tion (EE) is proposed for PCA. The algorithms are compared 
for different configurations using Monte Carlo simulations. 
Simulation results show that EE has the best performance 
and that normalization may be used for improving PAST and 
RP. 

1. INTRODUCTION 

Principal component analysis (PCA) is an important concept 
in statistical signal processing. PCA is used in various appli-
cations such as feature extraction (compression), signal es-
timation and detection. In blind signal separation, PCA may 
be used to prewhite (i.e. decorrelate) signals before inde-
pendent component analysis (ICA) is applied for finding the 
independent signal components. ICA algorithms are gener-
ally more efficient if the input data is white since the number 
of possible solutions to the problem decreases significantly. 

There are two different approaches to PCA. If the whole 
data set is available, analytical methods can be used to cal-
culate the principal components (PC). On the other hand, if 
PCA is to be used in real time applications, then the PCs 
have to be estimated on-line for each new sample. Algo-
rithms that operate on the whole date set are generally de-
noted off-line algorithms, while the latter type is denoted on-
line algorithms.  

Two on-line algorithms for PCA are the projection approxi-
mation subspace tracking (PAST) algorithm and the Rao-
Principe (RP) algorithm. The first algorithm was proposed 
by Yang in [1]. Essentially, PAST finds the PCs by minimiz-
ing the linear PCA criterion [2,3,4] using a gradient-descent 
technique or any recursive least squares variant. In this pa-
per, the well known recursive least squares (RLS) algorithm 
[5] is used. The second algorithm, RP, was proposed by Rao 
and Principe in [6,7].  RP estimates the PCs by using update 
equations derived from the Rayleigh quotient, without the 
use of any external parameter such as a step-size or forget-
ting factor. PAST, on the other hand, relies on a forgetting 
factor parameter to be tuned before it can be used.  

This paper investigates the effect of incorporating normali-
zation of the eigenvectors between iterations in the PAST 
and RP algorithms. In addition, a new on-line algorithm for 
PCA, denoted the exact eigendecomposition (EE) algorithm, 
is proposed. EE is based on direct estimation of the correla-
tion matrix followed by calculation of the PCs using the 
EIG-command in Matlab. The performance of these algo-
rithms will be assessed for different configurations using 
Monte Carlo computer simulations in Matlab. 

2. PRINCIPAL COMPONENT ANALYSIS 

On-line PCA can be viewed as a functional block where the 
input is a complex m-by-1 data vector )(nx  at the nth time 
instant. At each time instant the outputs are estimated eigen-
vectors and eigenvalues of the correlation matrix R  of the 
data. These eigenvectors and eigenvalues are denoted PCs of 
the data. Note that in this paper it is assumed that the corre-
lation matrix R  of the data is time-invariant. 

2.1 The PAST algorithm 

The PAST algorithm [1] minimizes an approximation of the 
linear PCA cost criterion, 
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where )()1()( nnnx H xw −=′ , β  is a scalar forgetting fac-

tor, )(nw  is an m-by-1 coefficient vector and ⋅  denotes 

the vector norm. This approximate version of the cost crite-
rion is quadratic and has the same form as the cost criterion 
of the RLS algorithm, with exception of the error signal (in-
side the vector norm) that is a vector instead of a scalar. 
Thus, the minimization may be performed by incorporating 
the new signal )(nx′  in the RLS. The RLS will update the 

coefficient vector )(nw  using )(nx′  as the input signal and 

)(nx  as the desired signal. When the algorithm has con-

verged, )(nw  will contain the eigenvector corresponding to 

the largest eigenvalue of the correlation matrix R , i.e. the 
largest PC. The eigenvalue can be found directly by the RLS 
via a reformulation of the update equation for the inverse 
correlation matrix. The deflation technique is used for se-
quential estimation of the remaining PCs. 



2.2 The RP algorithm 

The RP [6,7] algorithm is derived from the Rayleigh quo-
tient and uses the following rule for extraction of the first 
PC: 
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In the implementation the terms )1( −nRw  and 

)1()1( −− nnH Rww  are redefined as )1( −nP  and 
)1( −nQ  and updated independently before calculating the 

new coefficient vector )(nw . This is convenient since 
)(nQ  will be an estimate of the largest eigenvalue. The up-

date rules for )1( −nP  and )1( −nQ  may be rewritten so 
that the need for an explicit estimate of the correlation ma-
trix R  vanishes. No forgetting factor is incorporated in the 
estimation of )1( −nP  and )1( −nQ , nevertheless this could 
be useful in a time-varying environment. The remaining PCs 
are estimated by using the same deflation technique as in the 
PAST algorithm. 

2.3 The EE Algorithm 

In this paper the EE algorithm is proposed for PCA. EE uses 
the following update rule 

)()()1()( nnnn HxxRR +−= β , 

where β  is a scalar forgetting factor. The correlation matrix 

is estimated by ( ) )(1 nRβ−  and is used for calculating the 
eigenvectors and eigenvalues (i.e. the PCs) by calling the 
EIG-function in Matlab. A key difference between EE and 
the other algorithms is that EE uses direct estimation of the 
correlation matrix as the basis for calculating the PCs, while 
PAST and RP directly estimates the PCs without making a 
detour via the correlation matrix. 

3. CHOICE OF COEFFICIENTS AND 
NORMALIZATION 

The PAST and RP algorithms estimate the different PCs in 
an iterative way, where the largest PC is estimated first fol-
lowed by a deflation step. After the deflation, the second 
largest PC is estimated followed by a new deflation step and 
so on. This procedure continues until all desired PCs are 
estimated, then the sample instant n  is advanced by one and 
the procedure is repeated for the next data vector )(nx . The 
deflation step is essentially a simple algebraic rule that re-
moves the contribution of the latest estimated PC from the 
data vector. The most straight forward approach is to use the 
most current estimate of the eigenvector in this rule, but one 
could also choose to use the previous estimate. Which 
choice that is the best is not clear and is therefore investi-
gated by Monte Carlo simulations in this paper. Both the 
PAST and RP algorithm are simulated in two configurations, 
using the old or the new estimate. 

Eigenvectors are by definition normalized so that ww H  
equals 1. However, the formulation of the PAST and RP 
algorithms does not guarantee this condition. Depending on 
the application, the eigenvectors can be normalized after 
each iteration, every l  iteration or when the coefficients 
have converged [7]. In this paper, it is proposed that both 
algorithms are adjusted so that the eigenvectors are normal-
ized between iterations. Normalization is not required for 
EE, since the EIG-function assures that the eigenvectors are 
normalized at all time.   

According to the previous discussion, there are now a total 
of four possible configurations of PAST and RP. First, the 
old or the new estimate may be used in the deflation rule. 
Second, normalization of the coefficient vectors is on or off. 
The different configurations are denoted as A, B, C or D: old 
weights and normalization off (A), old weights and normali-
zation on (B), new weights and normalization off (C), new 
weights and normalization on (D). The configuration letter 
(A, B, C or D) is added to the algorithm name in order to 
differentiate between them. Examples are PAST-A, PAST-B, 
…, RP-A, RP-B, etc. EE does not have these configurations 
and hence it is simply denoted as EE. The performance of 
PAST and RP is dependent of the configuration and is inves-
tigated in the next section. 

4. PERFORMANCE EVALUATION 

In this section we evaluate the performance of the PAST-x, 
RP-x and EE algorithms by means of computer simulations 
that employ a Monte Carlo approach. Here, x denotes con-
figuration A, B, C or D, respectively. In the simulations, a 
white Gaussian random noise signal with variance 1 is fil-

tered by an first order AR filter ( )19495.01/1)( −−= zzH . 
The resulting filtered signal is then embedded by a 15-tap 
delay line resulting in input data vectors )(nx  of size 15-by-
1. The five largest true eigenvalues of the correlation matrix 

{ })()( nnE HxxR =  can be found to be 119, 17.8, 5.58, 2.65 
and 1.55, respectively. The condition number or the eigen-
value spread of R  is 451. The choice of the first order AR 
filter was made so that it results in approximately the same 
eigenvalues used in [6]. 

The performance evaluation is set up so that each algorithm 
(PAST-x, RP-x and EE) is simulated for 10000 Monte Carlo 
runs consisting of 2000 iterations. After the last iteration in 
each Monte Carlo run, the five largest estimated eigenvalues 
and the corresponding eigenvectors are examined. An esti-
mation error (the difference between the true eigenvalue and 
the estimated eigenvalue) is calculated and saved. Also, the 
absolute value of the directional cosines (DC) between the 
true and the estimated eigenvectors are calculated and saved. 
A value of +1 indicates perfect alignment of the estimated 
and true eigenvectors, while 0 indicate that the estimated 
and true eigenvector are orthogonal. The forgetting factor is 
equal to 1 for all simulations of PAST and EE. 
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Figure 1: Cumulative distribution functions for the 5th prin-
cipal component for PAST and EE. The vertical line corre-
sponds to the true eigenvalue. 
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Figure 2: Cumulative distribution functions for the 5th prin-
cipal component for RP and EE. The vertical line corre-
sponds to the true eigenvalue. 
 
The saved eigenvalue estimates and directional cosines may 
be evaluated by plotting cumulative distribution functions 
(CDF). The CDF for the eigenvalue estimates for the 5th 
principal component is plotted in figures 1 and 2. Figure 1 
shows the results for PAST and Figure 2 for RP, respec-
tively. The CDF for EE is also plotted in both figures as well 

as the true eigenvalue denoted by trueλ . The figures show 

that PAST and RP has similar performance, that EE has the 
best performance and that the B and D modes perform better 
than the A and C modes of the algorithms. 

A compilation of all results are shown in tables 1 to 4. All 
tables show performance results for all nine algorithms for 
the five largest PCs. Figures in bold highlights the best re-
sult for each PC, not taking the reference algorithm EE into 
account. Table 1 shows the averaged estimation error for the 
eigenvalues, Table 2 the variance of the eigenvalue esti-
mates, Table 3 the average DC for the eigenvectors and Ta-
ble 4 the variance of the DCs. From these results, the fol-
lowing observations can be made: 

• The EE algorithm has the best overall performance 
considering the performance measures listed in ta-
bles 1 to 4. 

• PAST-B has the lowest eigenvalue estimation error.  

• PAST-D has the lowest eigenvalue estimation vari-
ance. 

• PAST-D has the lowest eigenvector DC error (clos-
est to 1). 

• PAST-D and RP-D have the lowest eigenvector DC 
variance. 

• The performance of PAST-B and RP-B is similar. 

• The performance of PAST-D and RP-D is similar. 

• The performance of PAST-B and PAST-D is simi-
lar. 

• The performance of PAST-A, PAST-C, RP-A and 
RP-C is worse than for the B and D versions. 

From these observations, it can be concluded that the B and 
D configurations of PAST and RP have similarly good per-
formance. The A and C configurations have the worst per-
formance. Thus, it is concluded that the choice of the old or 
the new weights in the deflation step is not crucial. On the 
other hand, normalization is highly recommended. Finally, 
the EE algorithm has the most excellent overall performance 
and may therefore be used as a benchmark for PCA algo-
rithms. 

5. CONCLUSIONS 

The PAST and RP algorithms are both robust and efficient 
algorithms for PCA. This paper has investigated the per-
formance of the algorithms and the effect when using nor-
malization of the eigenvectors between iterations. Simula-
tion results clearly demonstrate that the algorithms operate 
more reliably when normalization is adopted. It is also 
shown that the EE algorithm provides the best performance 
and can be used as a benchmark for comparing PCA algo-
rithms. 
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PAST RP PC 
A B C D A B C D 

EE 

1 2.07 0.82 2.07 0.95 1.07 0.59 1.05 1.06 0.35 
2 -10.88 0.18 1.51 0.26 -10.13 0.20 0.99 0.28 -0.02 
3 -17.55 0.15 -0.33 0.19 -18.44 0.20 0.52 0.22 0.00 
4 -18.73 0.12 -0.47 0.13 -21.00 0.19 -0.14 0.16 0.00 
5 -20.33 0.09 -0.41 0.09 -18.27 0.13 -0.17 0.13 0.00 
 
Table 1: Average estimation errors for the eigenvalues 
 
 
 

PAST RP PC 
A B C D A B C D 

EE 

1 430.02 401.92 430.97 400.04 412.01 424.12 410.60 415.38 414.45 
2 1111.2 2.92 24.50 2.78 1009.2 2.95 6.29 2.81 2.75 
3 1505.6 0.35 11.13 0.31 1632.3 0.37 3.50 0.32 0.19 
4 1533.5 0.18 3.75 0.14 1853.4 0.22 1.36 0.17 0.04 
5 1666.3 0.10 1.11 0.08 1548.7 0.13 0.38 0.10 0.01 
 
Table 2: Variance of the eigenvalue estimates 
 
 
 

PAST RP PC 
A B C D A B C D 

EE 

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
2 0.74 1.00 0.93 1.00 0.80 1.00 0.99 1.00 1.00 
3 0.46 0.99 0.75 0.99 0.49 0.99 0.86 0.99 1.00 
4 0.31 0.94 0.57 0.95 0.36 0.92 0.66 0.94 1.00 
5 0.23 0.84 0.45 0.88 0.25 0.79 0.50 0.85 1.00 
 
Table 3: Average direct cosines 
 
 
 

PAST RP PC 
A B C D A B C D 

EE 

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.11 0.00 0.05 0.00 0.09 0.00 0.01 0.00 0.00 
3 0.13 0.00 0.15 0.00 0.13 0.00 0.08 0.00 0.00 
4 0.09 0.02 0.18 0.02 0.09 0.03 0.15 0.02 0.00 
5 0.06 0.07 0.16 0.06 0.06 0.07 0.16 0.06 0.00 
 
Table 4: Variance of direct cosines 
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