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ABSTRACT 
A real-time adaptive rate control algorithm for video 

transmission is presented. The proposed algorithm aims to determine 
the optimal rate at which the video should be sent through the 
network in order to minimize the expected distortion while meeting 
the delay requirements.  The packet loss rate is assumed to be a 
function of the transmission rate. The nodes of the network over 
which video packets are transmitted determine this function, 
possibly based on the congestion level of the network. Since this 
function is unknown an augmented state feedback regulator is 
introduced to control the packet loss rate by adjusting the 
transmission rate of the video. The expected distortion is calculated 
by dynamic programming at the source based on the desired packet-
loss and transmission rate pair and then the optimal transmission rate 
is chosen among feasible transmission rates. Simulation results are 
presented to establish the significant improvement in performance.  

1. INTRODUCTION 

Reliable transport protocols, such as TCP, may work well for 
applications that are not constrained by specific delay or jitter 
requirements. However, TCP is not suitable for multimedia 
communications, especially video streaming and real-time video, 
due to its “stop and go” and additive increase multiplicative 
decrease (AIMD) algorithms. Even though it is unreliable,  UDP 
offers an attractive alternative for delivering multimedia content, as 
it does not alter the transmission rate due to congestion. However, 
absence of congestion control mechanisms for multimedia 
transmission might eventually lead to a communication collapse due 
to congestion on the Internet [1]. Hence, there has been substantial 
amount of research to provide congestion control algorithms whose 
operation is akin to TCP and is also suitable for multimedia 
communication by using modified TCP or equation-based 
algorithms. A model-based rate control protocol is given in [2]. A 
nicely done survey about some of these proposed methods can be 
found in [3]. Notable among these methods are the Rate Adaptation 
Protocol (RAP) [4] , Loss-Delay based Adaptation algorithm (LDA) 
[5], and the TCP-Friendly Rate Control protocol (TFRC) [6]. 
Another approach to congestion control is network-based. Basically 
service providers or routers implement algorithms that may isolate 
unresponsive flows to the network’s congestion  and apply penalties 
to those flows. Random early detection (RED) [7] is a core queue 

management mechanism in the routers. However, RED does not 
make any distinction among flows. That is, it drops packets 
randomly when congestion occurs regardless of the incoming flow 
to which they belong. This might violate fairness if there are 
congestion-responsive flows that attempt to reduce their rates. The 
use of a uniform drop rate for both a responsive and an unresponsive 
flow in effect penalizes the responsive flow. For this reason other 
control mechanisms have been developed, which make a distinction 
among flows and first penalize the unresponsive flows such as 
CHOKe [8]. It is desirable to effectively allocate available resources 
such as bandwidth, especially when congestion occurs in the 
network. The main goal is to minimize the impact of loss of packets 
due to congestion. For a compressed video, like MPEG-2[9], 
minimizing packet loss itself does not necessarily mean maximizing 
video quality. This is due to the fact that the relative importance of 
content varies significantly among the packets. 

2. PROBLEM DEFINITION 

We consider the problem of minimizing the expected distortion 
for video transmission where the packet loss rate (PLR) is a function 
of video transmission rate. The packet loss rate becomes a function 
of transmission rate in the presence of a suitable penalty policy 
enforced by the network for abusive traffics that do not adjust their 
transmission rate based on the level of congestion in the network, 
such as UDP. The collection of penalty policies throughout the 
network determines the behavior of this function. It is not possible 
to establish an exact closed form relationship between the 
transmission rate and the PLR due to the possible diversity of 
network providers and of the congestion control algorithms. It is 
desirable to be able to control the PLR for the optimization of video 
quality. This translates to an optimization problem through 
controlling a dynamic system by using an adaptive controller. The 
optimization problem is defined as follows, 
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where M is the total number of packets that the optimization is 
performed over, [ ]( )kE D µ is the expected distortion and ( )kT µ is the 

delay for the  kth packet, based on transmission rate µ , and maxT is 



 

the maximum allowed delay. For easier representation we will omit 
µ  from [ ]( )kE D µ  in our notations and use [ ]kE D  instead. 

3. APPROACH TO THE PROBLEM 

We consider both the expected distortion and the packet loss 
rate together. The rate-controlled traffic flow is sent to the network 
and the sender receives information about packet loss rate either 
through RTCP (Real Time Transport Control Protocol) [10] or 
through negative acknowledgement (NACK) packets [11]. We use a 
controller together with a Kalman predictor, depicted in Figure 1, to 
drive the output to a desired packet loss rate by using observations 
and a simple loss model. Once the information regarding the 
previous loss rate is received and the packet loss rate (state of the 
system) is predicted for the next transmission, we attempt to bring 
the predicted loss rate to the desired loss rate by increasing or 
decreasing the video transmission rate.  It should be noted that the 
desired loss rate, and thus desired transmission rate, is determined 
by solving the optimization problem we defined in the previous 
section. The distortion per pixel can be given using the mean square 
error by, 
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 where iq  is the actual value of the ith pixel and c
iq is the pixel 

value at the receiver after possible concealment. We will define the 
distortion for intra pixels and for predicted pixels separately. Since 
the concealment method also plays a role in determination of the 
reconstructed pixel it should be defined in order to compute the 
distortion. In the concealment method used here the reference 
frame’s pixel is copied and used at the same spatial position as the 
lost pixel. It can be shown that the expected distortion per packet for 
intra and predicted pixels is given by: 
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where PN Nβ =  and [ ]kE D is the expected distortion in the 

kth transmitted packet including IN  intra macroblocks, PN predicted 
macroblocks, thus total I PN N N= + macroblocks. 

[ ] [ ]c ref
k kE d and E d  denote the expected distortion per macroblock 

after concealment in the kth packet and expected distortion per 
macroblock after possible concealment in the reference macroblocks 
of kth packet respectively.  

The distortion in (3) needs to be computed recursively. That is, 
the first frame (I frame) generated and transmitted includes all intra 
macroblocks and does not depend on any reference frames to be 
reconstructed. Even though the previous GOP’s last predicted frame 
is used for concealment, it is assumed that previous GOP’s last P 
frame is reconstructed successfully to be able to perform these 
recursive calculations in real time while streaming. Thus, the 
starting point of the recursive computations is the transmission of 
the I frame. Once another I frame is transmitted, in other words a 
new GOP starts, the recursive calculations reset and resume.  

3.1. Control of Packet Loss Rate via Adaptive Augmented State 
Feedback Controller 

It is necessary to observe and predict the relationship between 
the transmission rate and the loss rate in an adaptive dynamic 
fashion. Hence, we use a Kalman predictor to estimate p by using 
observations and a simple loss model. We define the state equations 
for the Kalman predictor as follows: 
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where w and v are process noise and the measurement noise 
respectively. Here w is used to model the packet drops due to traffic 
increase stemming from other sources in the network or due to 
random packet drops as a result of any other underlying algorithm 
such as RED, and v  is used to model possible measurement errors. 
Both variables are assumed to be Gaussian random variables. 
However, we chose 2

vσ ,measurement noise variance, much smaller 

than 2
Wσ , process noise variance. Thus, we have greater trust in the 

measurements. Once the state prediction is available we use the state 
feedback controller to regulate the packet loss rate. Here u is the 
control input to the system and is used to adjust the transmission rate 
until a feasible pair of desired loss rate and transmission rate can be 
found through this regulation process. We explain the usage of the 
state feedback controller next.  

3.1.1. Augmented State Feedback Controller 

We will define an augmented state feedback controller, which 
includes a linear quadratic regulator (LQR) and an adaptive 
compensator to reach to the desirable state. The state equations 
without the disturbance can be given in the following form 
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where  kr is our augmented state that is based on tracking of the 
output. We will explain in the next section how kr  is defined. We 
would like to first design a LQR to eliminate the additional external 
disturbances in the system and to enable the system to come to a 
stable zero equilibrium in the absence of input disturbance 
(augmented state, kr ). 

LQR aims to minimize both the input ku and the state to be 

controlled kp . By minimizing the following cost option 
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The solution to this minimization problem is given by [12] 
k f ku K p= −  and 1

fK R P−− = where P is the positive definite 
solution of the Riccati equation. Then we define the desired control 
rule as 
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where 1 1
d

k kp and p+ +  are the estimated packet loss rate and 
estimated desired packet loss rate through Kalman predictor for step 
k+1. Next the desired input d

ku  is defined to compensate the system 
in order to get the desired output. We choose Q much bigger than R. 
Thus in our case fK is very close to 1. We will use fK  as 1 in the 

rest of the calculations and d
ku is restricted to ensure stability. 

3.1.2. Determination of input k

du
 

A loss model to determine
k

du is defined by assuming that the 
excess traffic beyond the available bandwidth is dropped. Thus, our 
proposed loss model is given by, 
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Figure 1.  Packet loss control via state feedback controller. 
 

kp : Probability of loss for the kth  transmitted packet. 

kµ : Transmission rate for the kth  packet. 

kC : Available bandwidth for the kth packet’s transmission.  
We will monitor the network and estimate the available 

bandwidth, thus loss rate by using a Kalman predictor. We assume 
the relationship between the packet loss rate and the transmission 
rate to be linear. The linearity assumption of our model seems 
reasonable in the absence of further knowledge of the network since 
we are considering diverse network policies. 
From (6) we obtain, 

1 1( ) ( )k k k k kp Cµ µ µ+ += −      (7) 
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From (7) we obtain,  
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Notice that kα  is adjusted dynamically at each step based on 
the system model’s assumption of linearity. 

3.2. Solution of the Optimization Problem 

We would like to minimize the expected distortion while 
meeting the delay requirements. We obtain the packet loss rate and 
transmission rate pair through the regulator and minimize (1) over M 
packets. The number M is set to include the number of packets per 
GOP. Thus, the maximum delay allowed for this particular set-up is 
the time to encode the whole GOP. However, for stricter delay 
requirements M can be set to include fewer packets. Thus the 
maximum allowed delay can be set to a lower value as well. We 
relax the optimization problem by introducing a Lagrange multiplier 
λ  in order to reduce it to an easier problem to solve. A cost function 
can then be written in terms of expected distortion and delay as; 
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where  k k kT S µ= ,  kS :  Size of the transmitted packet. 

We present the solution in the form of dynamic programming 
(DP) by recursively calculating the cost given by (12). Figure 2 
depicts the possible transmission rates, associated costs with those 
transmission rates and pruned branches (shown with dashed lines). 
Once a solution is found it is checked to ensure that the delay 
criteria is also satisfied. If not, then λ is adjusted until the delay 
criterion is met. An optimum solution to the original problem can be 
obtained by appropriately choosing λ .  

4. SIMULATIONS 

We have performed simulations for scenes from the movie 
“matrix”. The video has  30 frames per second and the streams are 
generated over different bit rates varying from 1.5Mbps to 3Mbps. 
The simulations are performed for two different network congestion 
control schemes, Linear Congestion control (LC) and CHOKe 
congestion control with Optimal Rate Control Algorithm (ORCA) 
and without ORCA. The results are also compared to the case where 
there is no congestion control in the network. When there is no 
congestion control in the network the loss does not depend on the 
transmission rate of the video. The first set of simulations assumed 
that the network operates as per our model. In other words, there is a 
linear relationship between the excess amount of traffic and the 
probability of loss. 

In our second set of simulations we have used the CHOKe 
model as our network congestion control algorithm. The explanation 
of this algorithm and the resulting probability of loss is given in [8]. 
It should be noted that the packet loss rate is exponentially 
proportional to the incoming flows arrival rate in CHOKe model. 
We have assumed that the underlying RED algorithm only drops 
about 0.5% of the traffic and the traffic we generate makes up for 
3% of the total traffic in the node that applies this algorithm. PSNR 
comparisons are shown in Figure 3. We see that using ORCA in the 
presence of a congestion control algorithm significantly improves 
the performance. Moreover, the algorithm does not degrade the 
quality of the video transmission when there is no congestion 
control in the network. The algorithm drops some of the packets, 
thereby reducing its average video transmission rate. Comparisons 
of transmission rates are shown in Figure 4. The video output rates 
generated by ORCA are reduced by considerable amounts in the 
presence of packet losses. However they are still much higher than 
what the TCP traffic would have allowed at these loss rates. It 
should be noted that however, if there were an extremely strict 
control algorithm in the network that drops all of the packets above 



 

TCP rate, this algorithm would reduce its rate towards TCP-friendly 
rate.  

5. DISCUSSIONS AND CONCLUSION 

The framework presented in this paper can be extended to 
include adaptive bit allocation for real-time MPEG encoders, 
especially for videoconferencing applications. Our study only 
included the distortion caused during the transmission of the video. 
By including an adaptive MPEG encoder in the equation a joint 
distortion measure can be calculated and the rate may be optimized 
over this measure. This framework can also be extended to a 
content-based streaming protocol.  

We have seen that by implementing an algorithm that evaluates 
the cost and the benefits of its transmission rate at the sender it can 
lead to both reducing the traffic on the network when it is necessary 
and minimizing the expected distortion with the available 
bandwidth. The loss rate is kept at the desired level by implementing 
an augmented state feedback controller and the complexity of these 
calculations is reduced by using a recursive computation to calculate 
the expected distortion. The source evaluates the best possible rate 
for the video instead of trying to reduce its transmission rate around 
TCP-friendly rate. At first it may appear that this algorithm does not 
help in reducing the network load properly. However, if there is a 
strict congestion control mechanism in the network to force towards 
a TCP-friendly rate this algorithm will reduce its rate towards TCP-
Friendly rate. On the other hand, when other participants of the 
networks do not transmit with TCP-friendly rates reducing the 
transmission rate is not beneficial for the source either. As a result 
the source moderates its traffic generation based on the control 
algorithms in place to minimize the expected distortion. 
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Figure 2. Illustration for DP solution 

 
Figure 3. PSNR comparison of the received video. 

 
Figure 4. Transmission rates. 
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