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ABSTRACT 
In this paper we present a wavelet domain image resolution en-
hancement algorithm. An initial high-resolution approximation to 
the original image is obtained by means of zero-padding in the 
wavelet domain. This is further processed using the cycle-spinning 
methodology which reduces ringing. A critical element of the algo-
rithm is the adoption of a simplified edge profile suitable for the 
description of edge degradations such as blurring due to loss of 
resolution. Linear regression using a minimal training set of high-
resolution originals, is finally employed to rectify the degraded 
edges. Our results show that the proposed method outperforms 
conventional image interpolation approaches, both in objective and 
subjective terms, while it also compares favourably with state-of-
the-art methods operating in the wavelet domain. 

1. INTRODUCTION 

Resolution enhancement of pictorial data is desirable in many appli-
cations such as monitoring, surveillance, medical imaging and re-
mote sensing. It is a classic signal interpolation problem and con-
ventional approaches such as zero-order interpolation (sample-and-
hold) cause severe pixelation impairments while bilinear and spline 
interpolation invariably result in undesirable levels of smoothing 
across salient edges. Recently several efforts in the field have util-
ised wavelet-domain methodologies with the intention of overcom-
ing some of the problems associated with conventional treatment. A 
common feature of these algorithms is the assumption that the low-
resolution (LR) image to be enhanced is the low-pass filtered sub-
band of a high-resolution (HR) image which has been subjected to a 
decimated wavelet transform. A trivial approach would be to recon-
struct an approximation to the HR image by filling the unknown, so-
called ‘detail’ subbands (normally containing high-pass spatial fre-
quency information) with zeros followed by the application of the 
inverse wavelet transform (IWT). It is interesting to note that while 
this approach is capable of outperforming bilinear interpolation it 
has never appeared in the literature probably due to its simplicity. 
More sophisticated methods have attempted to estimate the un-
known detail wavelet coefficients in an effort to improve the sharp-
ness of the reconstructed images.  
In [1] and [2] estimation was carried out by examining the evolution 
of wavelet transform extrema from finer to coarser subbands.  Edges 
identified by an edge detection algorithm in lower frequency sub-
bands were used to formulate a template for estimating edges in 
higher-frequency subbands. Only coefficients with significant mag-
nitudes were estimated as the evolution of the wavelet coefficients 
among the scales was found to be difficult to model for other coeffi-
cients. Significant magnitude coefficients correspond to salient im-
age discontinuities and consequently only the portrayal of those can 
be targeted with this approach while moderate activity detail escapes 
treatment. Furthermore, due to the fact that wavelet filters have 
support which spans a number of neighbouring coefficients, edge 
reconstruction is inevitably based on contributions from such 

neighbourhoods. As methods based on extrema evolution only tar-
get locations of coefficients with significant magnitudes, such 
neighbourhoods will inevitably provide incomplete information 
ultimately affecting the quality of edge reconstruction. Performance 
is also affected by the fact that the signs of estimated coefficients are 
replicated directly from ‘parent’ coefficients (in a quad-tree hierar-
chical decomposition sense) without any attempt being made to 
estimate the actual signs. This is contradictory to the commonly 
accepted fact that there is very low correlation between the signs of 
parent coefficients and their descendants. In a coding context for 
example, the signs of descendants were generally assumed to be 
random [3], [4]. As a result, the signs of the coefficients estimated 
using extrema evolution techniques cannot be relied upon. 
In [5] a technique was proposed which takes into account the Hid-
den Markov Tree (HMT) approach of [6]. The latter was success-
fully applied to a different class of problems including image de-
noising and related applications. An extended version of this ap-
proach utilising super-resolution type of methodologies is presented 
in [7]. These methods model the unknown wavelet coefficients as 
belonging to mixed Gaussian distributions (states) which are sym-
metrical around the zero mean. HMT models are used to find out the 
most probable state for the coefficient to be estimated (i.e. to which 
distribution it belongs to). The posterior state is found using state-
transition information from lower-resolution scales and the coeffi-
cient estimates are randomly generated using this distribution. Being 
symmetrical around zero, the probability of estimation of a coeffi-
cient with a negative sign is equal to that with a positive sign. Con-
sequently sign changes between the scales are not taken into account 
and randomly generated signs are assigned to the estimated coeffi-
cients. Finally the HMT based method has been further developed 
so that it does not require any training data set [8].   
In [9] and [10] a wavelet-based superresolution method was pre-
sented based on the Multiresolutional Basis Fitting Reconstruction 
(MBFR) technique in [11]. The algorithm exploits the interlaced 
sampling structure in the LR data in the existence of multiple LR 
images. Finally, a similar approach was proposed in [12] on the 
basis of the availability of a single LR image. The basis of this ap-
proach, MBFR technique, was designed to take advantage of the 
non-uniform sampling of a signal using sections with higher sam-
pling rates to interpolate higher frequencies locally. However avail-
ability of only a single LR image, with implication that the sampling 
is uniform, prohibits taking full-advantage of this scheme. 
A different approach to improve the perceptual quality of wavelet 
compressed images has been proposed in [13]. In this work, edges 
are represented using the edge model devised in [14]. The edges are 
then reconstructed by changing the edge parameters and making 
them more similar to the ideal edge model. As the inherited edge 
model is an artificial one, the algorithm results in non-natural look-
ing edges. It should also be noted that this scheme targets wavelet 
compressed images and hasn’t been applied to image resolution 
enhancement problems. 



Image/Method Lena  Elaine Baboon Peppers 
Original 1.3086 

± 0.3863
1.5197 
± 0.2843 

1.0206 
± 0.2924

1.4627 
± 0.3110

Bilinear 1.4672 
± 0.4085

1.7326 
± 0.3477 

1.2373 
± 0.3627

1.6970 
± 0.3422

WZP (Db.9/7) 1.3635 
± 0.402

1.6284 
± 0.3217 

1.1157 
± 0.3355

1.5743 
± 0.3302

WZP and CS 1.3867 
± 0.3979

1.6683 
± 0.3158 

1.1373 
± 0.3301

1.6174 
± 0.3316

WZP,CS and 
ER 

1.3325 
± 0.3774

1.6058 
± 0.3037 

1.1564 
± 0.3250

1.5514 
± 0.3170

Table 1. Calculation of horizontal edge width parameter w 
for a variety of images and reconstruction techniques. 

 
Recently it has been shown that the cycle-spinning methodology 
produces notable results when adapted to wavelet domain resolution 
enhancement problems [15]. In this paper, we adopt the standard 
degradation model where an LR image is obtained from an HR 
image as the low spatial frequency subband of a decimated discrete 
wavelet transform and show that the results obtained in [15] could 
be further improved upon by least-squares estimation of the parame-
ters of a generic edge profile.  

2. LOW-RESOLUTION IMAGE GENERATION AND EDGE 
MODELLING 

As already stated it is assumed that the LR image to be enlarged is 
the LL (low-pass) subband of a quad-tree wavelet decomposition of 
the unknown HR image.  This LL subband is the result of variable-
separable (first horizontal, then vertical) low-pass wavelet filtering. 
The unavailability of high-frequency spatial information normally 
residing in the unknown subbands results invariably in blurring and 
ringing of salient image features such as sharp edges. Nevertheless, 
low-pass filtered versions of edges actually survive within the LL 
subband. While these are typically smoothed and widened versions 
of the original edges it is worth noting that, for simple edge profiles, 
their notional centre of symmetry (i.e. the midpoint between the 
minimum and the maximum intensity value) has not moved from its 
original location.  
To describe edge evolution as it undergoes low-pass filtering we 
adopt the model proposed in [14]. According to this model image 
edges can be approximated by Gaussian-smoothed step functions. In 
one dimension (i.e. along an image scan line), if h(x;b,c) is a step 
function and g(x,w) is a Gaussian, then an edge s(x) is approximated 
by: 

s(x) ≡ s(x;b,c,w) = h(x;b,c)*g(x,w) (1) 
where c is the edge contrast the, b is the edge minimum and * de-
notes convolution. Parameter w describes the width of the edge (i.e. 
distance from the midpoint) and is implicitly related to the variance 
of the Gaussian smoothing function. The above profile is illustrated 
in Figure 1 for edge parameters b=20, c=120 and w=1.5.  
Using the above model, smoothing due to low-pass filtering mani-
fests itself as an increase of parameter w, while the other parameters 
remain relatively unaffected (assuming for simplicity wavelet filters 
of unity gain). If  s0(x) = s(x;b0,c0,w0) is an edge in the unavailable 
HR image, the corresponding surviving edge in the available image 
would be represented by s1(x)  = s(x;b0,c0,w1) + qn(x) where w1 = λ 
w0 with an edge widening factor of λ and qn(x) is a term accounting 
for other residual degradations such as ringing. As explained in the 
next section, a critical component of our method is the estimation of 
edge width w. We account for edge distortion (primarily smoothing) 
by establishing a correspondence between available LR image data 
and a training set of HR image data using linear regression. 

3. RESOLUTION ENHANCEMENT 

The proposed algorithm consists of three steps. In the first step, an 
initial HR approximation is generated using wavelet domain zero 
padding.  This approximation commonly exhibits artefacts such as 
smoothing and ringing. To reduce the ringing artefacts, a variant of 
the cycle spinning methodology is applied as a second step. Finally, 
the edges are rectified by re-adjusting their widths according to 
estimates obtained by processing LR image data. These steps are 
explained in more detail below. 

3.1 Wavelet Domain Zero Padding (WZP) 

An initial approximation to the unknown HR image is generated 
using wavelet-domain zero padding (WZP). Using a given LR 
image x of size m x n, the unknown HR image y is reconstructed 
by using zero padding of high-frequency subbands (i.e. setting all 
elements of these subbands to zeros) followed by inverse wavelet 
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transform. 

3.2 Cycle Spinning (CS) 

The decimated wavelet transform is not shift-invariant and as a 
result, distortion of wavelet coefficients, due to quantisation of coef-
ficients in compression applications or non-exact estimation of high-
frequency coefficients in resolution enhancement applications (in-
cluding zero padding of coefficients as in WZP), introduces cyc-
lostationarity into the image which manifests itself as ringing in the 
neighbourhood of discontinuities. Cycle-spinning (CS) has been 
shown to be an effective method against ringing when used for de-
noising purposes in the wavelet domain [16] and also for reducing 
ringing and increasing the perceptual quality of compressed images. 
CS method aims to approximate shift-invariant statistics by averag-
ing out the cyclostationarity. In [17] and [18], it was shown that CS 
applied as a post-processing operation after decompression results in 
significant improvements in the framework of JPEG and JPEG2000 
image compression. 
First a number of LR images  are generated from  by (i) 
spatial shifting, (ii) wavelet transforming and (iii) discarding the 
high frequency (HF) coefficients:  where D repre-
sents discarding of HF coefficients, W denotes wavelet transform 
and S

ji ,x̂ 0ŷ

0,, ˆˆ yx jiji DWS=

i,j is a shift operator applying horizontal and vertical shifts of 
(i,j) for },1,...,1,{, kkkkji −+−−∈ . Second, WZP is applied to all 

 yielding N  images, where N=(2k+1)(2k+1). Finally, these 
intermediate HR images are re-aligned and averaged to give the 
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Figure 1. The simplified edge model 



final HR reconstructed image: ∑ ∑
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the inverse of the shifting operator Si,j.  

3.3 Edge Rectification (ER) 

As already stated the loss of high-frequency information results in 
larger values for parameter w –implying widening of edges- in re-
constructed HR images compared with the original images, while 
parameters b and c remain relatively unaffected. Furthermore, appli-
cation of cycle-spinning widens the edges further. Table 1 shows the 
mean value and standard deviation of w for a range of images ob-
tained using various techniques. In this table Db.9/7 denotes the 
well-known Daubechies 9/7 discrete wavelet filterbank which was 
used throughout our experiments. 
It would be reasonable to assume that a method readjusting (i.e. 
reducing) edge width while maintaining the edge profile otherwise 
would improve the quality of the reconstructed image. The method 
proposed in [13] attempts to achieve this by making edges more 
similar to the ideal edge model.  However, since an artificial edge 
model is used, the algorithm results in non-natural looking edges. 
We propose an alternative method which estimates edge parameters 
directly from a training set of HR image data and further refines 
them using local neighbourhood information. 
First we detect the edges in y, the HR image used as a ground truth 
training set, using a Canny Edge Detector. Then we calculate the 
edge parameters using (1) and cluster the edges. Edges are clustered 
into 9 groups according to their w and c parameters. These groups 
are equally separated in between maximum and minimum values of 
w and c as illustrated in Figure 3. The following algorithm is applied 
to each cluster independently. 
The edges in ŷ, the output of the previous step, are degraded ver-
sions of the corresponding edges in y. Linear regression is employed 
to estimate pixel values in the neighbourhood of the centre of sym-
metry of an edge. In particular we express edge pixel values in y as 
a weighted linear mix of neighbouring pixels in ŷ. By denoting the 
coefficient at position (m,n) in y as ym,n  and the coefficient at posi-
tion (m,n) in ŷ as ŷm,n , the estimates of ym-1,n, ym,n and ym+1,n  are 
obtained according to the following: 

ym-1,n  = a0 + a1 ŷm-2,n+ a2 ŷm-1,n + a3 ŷm,n (2) 
ym,n     = a4  + a5 ŷm-1,n + a6 ŷm,n + a7 ŷm+1,n (3) 

ym+1,n = a8 + a9 ŷm,n + a10 ŷm+1,n + a11 ŷm+2,n (4) 
Using (2), (3) and (4) for all detected edge points falling into the 
current cluster, three over-determined equations could be con-
structed. These equations are solved by linear least squares regres-
sion to find the estimator weights sets {a0, a1, a2, a3}, {a4, a5, a6, a7} 
and {a8, a9, a10, a11} minimising the error. These estimated parame-
ters are then used to rectify the edges in ŷ. By repeating this process 
for each cluster, separate estimator sets for each cluster are obtained. 
 It is interesting to note that estimated parameters obtained from a 
very small training set, even a single image, work well for a wide 

variety of natural images. This edge rectification process is subse-
quently referred to as ER. The algorithm works in a variable-
separable way, first horizontally then vertically. As horizontal and 
vertical edges in natural images have the potential of different de-
grees of sharpness, for example due to non-isotropic sensors, it was 
found beneficial to calculate different estimator weights for each 
direction. A simplified block diagram for the overall algorithm is 
shown in Figure 2 where the notation for spatial shifting is in the z-
domain.  
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Further levels of enlargement, such as a factor of 4, can be achieved 
by first generating the 4x enlarged image directly with WZP method 
and then applying the cycle-spinning method followed by enhance-
ment of edges on this resulting image. Iterative application of the 
algorithm is also possible but it was observed that this method gen-
erates inferior quality images as well as being computationally more 
expensive.  

4. EXPERIMENTAL RESULTS 

We have experimented with a number of well-known test images 
including Lena, Elaine, Baboon and Peppers. As already stated a 
HR version of these (512x512) was used as ground truth for per-
formance evaluation purposes. The training phase for linear regres-
sion is repeated using all the images in the data set with one image 
left out for evaluation. 
The error between the ground truth high-resolution originals on the 
one hand and reconstructions on the other is expressed in terms of 
PSNR values and is tabulated in Tables 2 and 3 for 2x and 4x 
enlargement respectively. Objective comparisons are carried out 
with conventional bilinear interpolation and established wavelet 
based methods [2,5,7]. A non-wavelet scheme based on edge-
directed interpolation [19] was also considered to provide a com-
parison with a state-of-the-art method not operating in the wavelet 
domain. Our results show that the proposed algorithm yields modest 
but consistent improvements over all competing methods something 
which was confirmed by visual inspection of the resolution en-
hanced images.  
Figure 4 shows subjective comparisons with bilinear interpolation 
for Lena. Overall our results confirm that the portrayal of salient 
image features such as edges and contours is consistently improved 
while no perceivable artefacts are introduced.    
Our experiments have also revealed that the choice of parameter k 
(the maximum shift to be applied in the cycle-spinning) has a sig-
nificant effect on the algorithm efficiency and choosing k = 4 re-
sults in the best performance.  Using a smaller neighbourhood suf-
fers from not having sufficient data while a larger neighbourhood is 
liable to crosstalk from spatially uncorrelated image features.  

5. CONCLUSIONS 

An image resolution enhancement algorithm operating in the wave-
let domain was presented. The main elements of this algorithm were 
zero-padding of high-frequency wavelet subbands, cycle spinning to 
reduce ringing arising from zero-padding and finally edge rectifica-
tion to alleviate blurring due to the unavailability of high spatial  

Figure 3. Edge cluster map 

Figure 2. Simplified block diagram of the proposed method 



 

equency information. The proposed algorithm was based on the 
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adoption of a simplified profile model and the parameterisation and 
rectification of blurring using linear regression. Our results have 
shown that the proposed method outperforms conventional image 
interpolation approaches, both in objective and subjective terms, 
while it also compares favourably with state-of-the-art methods 
operating in the wavelet domain.  
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