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ABSTRACT
In this paper, we present a method for tracking a planar ob-
ject (license plate) in 3D. Given an initial estimate, we try to
estimate the location, motion vector and pose of the object
in 3D for the successive video frames. We utilize conden-
sation algorithm for estimating the state of the object and
filtering the measurements according to the extracted image
features. Image features, namely the directional gradients
on object boundaries, are calculated locally for each guess
of the condensation algorithm. Local extraction of the fea-
tures decreases the computational complexity of the tracking
process. The algorithm tries to fit the state of the object to
the image gradients. In contrast with optimization-based ap-
proaches, condensation algorithm simplifies the complexity
of the system. The parameters of the algorithm are easy to
understand and easy to apply even for complex structures.
We demonstrate the results of the method for tracking a li-
cense plate for different scenarios. The results are promising
for further research on the method.

1. INTRODUCTION

Harris et. al. [1] introduce RAPID object tracker. The
RAPID tracker represents a 3D object as a set of control
points, which are high contrast edges. The pose of the ob-
ject is estimated and the object boundaries are tracked. The
algorithm can be divided into two parts, the first dealing with
making measurements in the image, and the second calcu-
lating the new pose of the object. The pose of the object is
tracked over time using a Kalman filter. A constant velocity
model is assumed for the object, so that there are 12 state
variables (6 for pose and 6 for pose velocity) and 6 measure-
ment variables (pose only).

Kollnig and Nagel [2] match a synthetic gradient im-
age directly to the gray level gradient image from the video
frames. The difference between the synthetic gradient im-
age and gray value gradient of current frame is used to up-
date the 3D pose of the model using a MAP estimator. A
Kalman filter stabilizes the tracking. The edges are mod-
els with 2D Gaussians and MAP estimator utilizes Gauss-
Newton method modified with Levenberg-Marquart itera-
tion.

N. Giordana et. al. [3] introduce a 2D model based track-
ing. The tracking is performed in several steps. The con-
trol points on the contour are determined from the 3D model.
These points form a polyhedral shape, which is assumed to
correctly model the object appearance in the image. Perspec-
tive projection is applied to the model. An affine transforma-
tion is defined and the parameters are estimated. The esti-

mation is done by the minimization of a Bayesian criterion,
which is composed of two terms, one for the minimization of
the differences from the model gradients and the frame gra-
dients, one for the deformations from the model shape. For
gradient matching a gradient optimization algorithm is used.
For overall minimization simulated annealing is utilized.

Eric Marchand et. al. extend the work in [3], with ad-
ditional paradigms [4]. The future point matching is accom-
plished by ME method which calculates the gradients in the
direction of a line between two future points of the 3D shape
model. This reduces the computational effort for the mini-
mization step. Again the minimization step consists of two
steps for affine transformation and the 3D model gradient
match. For optimization an explicit discrete search algorithm
is applied.

The work in [1, 2, 3, 4] relies on the matched future
points, which are calculated from the 3D model. However,
matching the future points can yield mismatches, which will
degrade the performance of 3D pose optimization step.

In [5] condensation algorithm is applied for 3D face and
eye gaze tracking. They consider the problem as nonlinear
state estimation and apply a special version of Kalman fil-
ter with branching particle propagation. They consider the
approach as successful but do not give a measure of compu-
tational complexity. They employ about 200 particles.

2. SYSTEM MODEL

Considering the motion of a vehicle license plate in real
world, it is trivial that the motion is in three-dimensional
space with many alignment possibilities. Defining a 3D loca-
tion in Cartesian coordinates, we need three dimensions and
for determining the alignment of a 3D object in space, we
will need three angles such as

[ x y z α β γ ]T (1)

where, α is the rotation around x axis, β is the rotation
around y axis and finally γ is the rotation around z axis. Be-
side the location and alignment of a 3D object, we need to
consider its motion in 3D space, for which we will need to
define a magnitude and two angles in spherical coordinates
such as

[ r φ θ ]T (2)

where, r is the velocity, θ is the azimuthal angle in xy-plane
from x-axis, φ is the polar angle from z-axis. So the total
state vector of our system will have nine variables. On the
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Figure 1: License plate motion model

other hand, for a planar object, which can move in the direc-
tion of its normal only as shown in Fig 1, the state vector can
be represented with only seven variables because two vari-
ables for pose and motion combine. The state vector can be
shown as.

[ x y z r α β γ ]T (3)

The system dynamic equation is non-linear such as

xk+1 = f (xk)+ wk (4)

which defines the motion in 3D. The measurement equation
is also nonlinear such as,

yk = h(xk)+ vk (5)

where wk and vk are Gaussian process and measurement
noise. The function f (xk) contains trigonometric functions,
while the function h(xk) is defined by the camera perspec-
tive transformation. The system is modeled with first order
motion equation, which assumes constant velocity, spherical
motion with constant [ α β γ ]T angles. In contrast with
the work in [1,2,3,4], we utilize Condensation algorithm for
estimating the state of the system. This work is a novel usage
of Condensation algorithm for such a tracking problem.

3. PERSPECTIVE CAMERA MODEL

The camera model defines the h(xk) function. The model
contains two types of parameters. The extrinsic parameters
are the parameters that define the location and orientation of
the camera reference frame with respect to a known world
reference frame. The intrinsic parameters are the parame-
ters necessary to link the pixel coordinates of an image point
with the corresponding coordinates in the camera reference
frame. When both intrinsic and extrinsic camera parame-
ters are known, the full camera projection matrix M is de-
termined. The projection is than just a matrix multiplication
defined as

(
x
y
z

)
= M.

⎛
⎜⎝

X
Y
Z
1

⎞
⎟⎠ . (6)

By this projection the real world coordinates X Y Z are
transformed into image coordinates x y z and the pixel
coordinates on the image px, py can be calculated by px = x/z
and py = y/z.

We utilize full perspective model, where the camera and
space coordinates overlap and the 3D origin is the origin of
the image plane. The intrinsic parameters are determined by
the camera vendor. Depending on the utilized camera lenses,
a distortion model can be necessary. Especially radial distor-
tion has significant effects if wide angle lenses are used. We
have not utilized any distortion model in our experiments.

4. CONDENSATION ALGORITHM

The standard Condensation algorithm can be summarized as
follows:
1. Initialization: t = 0

For n = 1...N generate samples from the prior in order to
obtain {sn

0,π
n
0}

where s′ are the samples and π ′s are the weights assigned
to each sample.

2. Iterate for t=0,1,2,...
At time step t+1 , construct the nth of N samples as fol-
lows:
(a) Propagate the samples using state transition equation

to obtain p(xt+1|y1:t).
From the sample set at time t , where the samples
correspond to the location, pose and motion of the
license plate:

{sn
t ,π

n
t },n = 1,2, ...,N

The new sample set {sn
t+1,π

n
t+1} is composed accord-

ing to the equations:

sn
t = [ xt yt zt rt αt βt γt ] (7)

sn
t+1 = sn

t +

⎛
⎜⎜⎜⎜⎜⎜⎝

xt + rt .sinβt
yt − rt .sinαt .cosβt
zt + rt .cosαt .cosγt

rt
αt
βt
γt

⎞
⎟⎟⎟⎟⎟⎟⎠

+ N(0,σ) (8)

(b) Calculate the new weights by:

πn
t+1 = πn

t .p(yn
t+1|sn

t+1)

(c) Store samples {sn
t+1,π

n
t+1,c

n
t+1} where cn

t+1 are the
cumulative probabilities given by:

c0
t+1 = 0

cn
t+1 = cn−1

t+1 + πn
t+1

(d) Normalize by dividing all cumulative probabilities
cn

t+1 = cn
t+1/cN

t+1, i.e. so that cN
t+1 = 1 and weights

πn
t+1 = πn

t+1/cN
t+1, so that ∑n πn

t+1 = 1.
(e) Resample the samples sn

t+1 with probability π n
t+1 to

obtain N samples. For this purpose, generate a ran-
dom number r ∈ [0,1] , uniformly distributed. Find
the smallest n for which cn

t+1 ≥ r. Add this sample to
the new set {sm

t+1,π
m
t+1,c

m
t+1},m = 1,2, ...,N

Our approach has a probabilistic framework, where the prior
and posterior probability distributions are represented by



Figure 2: Samples

Figure 3: Directed gradients along the object boundaries

samples. Each sample is a vector, composed of seven vari-
ables for the location, alignment and the velocity of the ob-
ject in 3D as explained in Section 2. Each sample can be
considered as a guess for the license plate location, align-
ment and motion. The samples are projected on to the video
frame in Fig 2. The samples and the associated probabilities
approximate the prior and the posterior probability distribu-
tions. The probability, associated to each sample is calcu-
lated by the likelihood function.

We use the directed image gradients for determining the
probabilities of each sample {π n

t ,sn
t } in Condensation algo-

rithm. The directed gradients are calculated by taking the
difference vertical to the proposed license plate borders as
shown in Fig 3.

5. RESULTS

The algorithm is robust to wrong initialization; according to
the initialization covariance of the particles, the algorithm
can tolerate wrong initialization. There is a trade off in defin-
ing the initial covariance. If it is defined too large, the al-
gorithm can converge to a wrong location, which is not the
license plate. In Figure 4 the first sequence shows an exam-
ple. The initial location is refined after ten frames. Here the
number of particles is 128.

The algorithm can track severe maneuvers as shown in
Figure 5. The sequence 2 shows an example. For this exam-
ple the number of particles needed to be increased to 2048.

The algorithm can converge in static images; the algo-
rithm can converge in static images. In Figure 6, the algo-
rithm is applied on static image. The initial state is slightly
wrong. In the proceeding iterations the algorithm can con-
verge to the true boundaries.
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