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ABSTRACT 

The real cepstrum is used to design an arbitrary length 
minimum-phase FIR filter from a mixed-phase sequence. 
There is no need to start with the odd-length equiripple 
linear-phase sequence first. Neither phase-unwrapping nor 
root-finding is needed. Only two FFTs and an iterative 
procedure are required to compute the filter impulse 
response from real cepstrum; the resulting magnitude 
response is exactly the same with the original sequence. 

1. INTRODUCTION 

In many low delay applications of FIR filters design such 
as data communication system, linear phase characteristic 
is not necessary and, minimum phase design can preserve 
desired magnitude response and has the advantage of 
minimum delay over other counterparts with the same 
magnitude response. 

There has many methods been developed to design 
minimum-phase FIR filters, especially the one proposed by 
Herrmann and Schuessler [1]. It starts with an odd-length 
linear-phase equiripple FIR filter and shifts it up by 
one-half the stop band’s peak-to-peak ripple, resulting in 
second-order zeros on the unit circle. The zeros inside the 
unit circle and a simple zero out of each pair of double 
zeros on the unit circle are then retained to obtain the 
minimum-phase filter with half the degree. However, the 
difficulty of root-finding procedure limits this method and 
the magnitude response becomes approximately square 
root of the original one. Therefore, later researches resorted 
to other methods to avoid root-finding procedure. Mian 
and Nainer [2] utilized the complex cepstrum to extract the 
minimum-phase component. In this method, only two FFTs 
are required, but cumbersome process of 
phase-unwrapping is required. To avoid phase-unwrapping, 
Pei and Lu [3]  applied differential cepstrum to design the 
equiripple minimum-phase FIR filter, but 3 FFTs are 
required. Rather than using cepstrum, an approach based 
on Newton-Raphson iterative algorithm [4] was recently 
recommended to find the minimum-phase spectral factor of 
polynomials. The work emphasizes on its better accuracy 
than that could be obtained by root-finding when there’s no 
zeros on the unit circle. If there are indeed double zeros on 
the unit circle, however, precision will be lost. 

Among the several methods mentioned above, all are to 
design a linear-phase equiripple FIR filter first. If this 

linear phase filter is not equiripple in the stop band, we 
cannot merely shift up its transfer function to get the 
sequence with double zeros for its z-transform. Moreover, 
the minimum phase filter magnitude response becomes 
square root of the original one by keeping half the zeros on 
and inside the unit circle. Recently, a different approach 
based on root moments was proposed to design 
minimum-phase FIR filters [6], which preserves the same 
magnitude response. But it needs to start from a linear 
phase FIR filter, due to the complex conjugate relation 
between its zeros. Moreover, we need to select a proper 
radius of integration contour in advance to calculate 
moments accurately. From the previous works of Mian and 
Nainer [2], we can extend it and avoid phase-unwrapping 
by using real cepstrum. This benefits from the problem 
itself, that is, constructing the minimum-phase component 
from its magnitude. It is known that a minimum-phase 
sequence’s magnitude determines its phase. Through 
several deductions, we will find that real cepstrum 
determines a sequence’s minimum-phase component. 
Moreover, in our works, the minimum-phase filter will 
retain the original magnitude response exactly. 

In the following sections, we first discuss several basic 
related concepts. Next, the formal steps for 
minimum-phase sequence construction using real cepstrum 
will be summarized. Furthermore, we refer to this method 
in an alternative viewpoint by treating it as passing the 
original sequence through an allpass filter. Finally, several 
design examples are shown and illustrated the effectiveness 
of this approach. 

2. BASIC CONCEPTS ON CEPSTRUM 

A. Complex Cepstrum and Real Cepstrum 
Let h(n)  be a real sequence with        as its Fourier 

transform. Its complex cepstrum      and real cepstrum    
as;dl are defined as 
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where 1−F denotes the inverse Fourier transformation.  
Note that in (1) and (3), to compute complex cepstrum, 
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we need to perform logarithm on a complex number. The 
imaginary part of the complex logarithm must be 
continuous and without its linear-phase term to avoid 
ambiguity. To achieve this, we can first compute the 
principle value of the phase (between -π and π), then 
unwrap the phase to a continuous one, and remove the 
linear-phase term.  
B. Properties of Minimum/Maximum-Phase Sequence 
and Its Complex Cepstrum 

From [5], there are two useful properties. 
a. If     is a minimum-phase sequence,     will 

be a causal sequence. That is,        for      . 
b. If     is a maximum-phase sequence,     will 

be an anti-causal sequence. That is,       for     
C. Explicit Formula between Minimum-Phase Sequence 

and Its Complex Cepstrum 
An arbitrary sequence    and its complex cepstrum  

sdfashas an implicit recursive relation [5] as 
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If     is a finite minimum-phase sequence, the above 
summation can be reduced to finite terms as 
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D. Reconstruction of a Causal Sequence from its Even 
Part 

If     is a causal sequence, it can be recovered simply 
by its even part sequence  
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E. Fourier Transform Pair between Time- and Frequency- 
Domain 

Let     and     are the even and odd parts of 
sequence    .       and       are the real and 
imaginary parts of its Fourier transform, respectively. Now, 
if     is a real sequence, we have the following Fourier 
transform relations : 
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3. CONSTRUCTION OF MINIMUM-PHASE 
SEQUENCE 

Let       denote the minimum-phase counterpart of    , 
and       be the complex cepstrum and the real 

cepstrum of       , respectively. 
From the above concept, if we want to extract the 

minimum-phase part from a mixed-phase sequence    , 

we can simply drop the non-causal part of       to 
acquire      , and calculate       directly using (6). 
Calculating complex cepstum     from       , however, 
is concerned with taking logarithm on complex number, 
where phase unwrapping is needed. We can skip the 
complicated procedure of phase unwrapping by adopting 
its real cepstrum, which does not involve phase 
unwrapping. The reason we can directly use real cepstrum 
comes from (7) and (8) as shown in Fig. 1(a) and (b). Note  
that       is the real part of       from (2). Because 
the real cepstrum    is the inverse Fourier transform 
of      , we find that real cepstrum is exactly the even 
part sequence of complex cepstrum using (8). If we further 
combine this corollary with (7), now we know we can 
reconstruct     from    using (7), rather than 
from     . 

If     has its zeros on the unit circle, the region of 
convergence of       acannot include the unit circle. 
From this computational point of view, we should avoid the 
zeros existing on the unit circle. But in practice, it’s often 
to design digital filters with some zeros on the unit circle in 
z-domain. We can overcome this problem by selecting a 
different contour c slightly inside unit circle while 
computing   from   [5]. This can be achieved 
equivalently by first multiplying the input h(n) with an 
exponential sequence as 
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where            . This step will cause the radius of its 
zeros scaled down by the factor   , i.e. moving its zeros 
slightly inside the unit circle. 

Besides, even though the sequence is finite, its cepstrum 
sequence is still infinite [5]. Computationally, aliasing 
effect will occur. To reduce the aliasing effect, we must 
append w(n)  with several trailing zeros as in (10). 

Now we summarize the overall steps for constructing the 
minimum-phase sequence     from any mixed-phase 
sequence     as follows : 
1. Choose             to move the zeros slightly 

inside on the unit circle. 
2. Perform L-point (FFT)L on       , n = 0,1,…,(N-1), 

to get      , k = 0,1,…,(L- ,           . 
3. Perform (IFFT)L on          to get     . 
4. Construct        from      using (7). 
5. Compute       from        using (6). 
6. Rescale       to get                 . 

4.  ALLPASS FILTERING VIEWPOINT 

In this section, we provide another viewpoint on the above 
works. In fact, the proposed process in the previous section 
is equivalent to pass the mixed-phase sequence through an 
proper allpass filter to become a minimum phase output 
sequence. Intuitively, this can be inferred from the fact that 
the mixed-phase sequence and its minimum-phase 
counterpart have the same magnitude response with 
different phase response. Formally, We can prove this by 
considering the characteristics of an allpass filter’s 
complex cepstrum. 
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An allpass filter’s transfer function Hap(z)can be 
expressed as 
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We can drop the linear-phase term    to compute its 
complex cepstrum as follow: 
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Thus, 
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Notice that an allpass filter’s complex cepstrum is an 
odd sequence. From the previous discussion, while we 
drop the non-causal part of the mixed-phase sequence, it 
can be viewed as to apply an allpass filter whose 
non-causal part is just the negative non-causal part of the 
mixed phase sequence as shown in Fig. 1(c). Therefore, the 
two non-causal parts will be added and cancelled to be zero. 
Moreover, if we consider the zeros’ locations, we find that, 
by multiplying H(z) with Hap(z), the effect is that 
the     ’s zeros lying outside the unit circle will be 
cancelled by the poles of Hap(z)’s denominator, and 
reflected inside unit circle at their reciprocal conjugate 
locations. 

5.  DESIGN EXAMPLES 

In the following, two examples are given to illustrate 
the design of minimum-phase FIR filter by the proposed 
method. Among the two examples, the first one is a 
linear-phase equiripple lowpass filter. The other one is a 
lowpass mixed-phase filter which emphasizes that we need 
not to start with a linear-phase filter to accomplish our 
work. In the two cases, their original frequency 
magnitude/phase response and zero-pole plot are shown in 
Fig.2 and Fig.3, respectively. 

6.  CONCLUSION 

We have introduced a simple effective method to 
construct a minimum-phase FIR filter from a mixed-phase 
filter. In Table 1, we compare the new method with other 
ones proposed in some literature. In our design procedure 
and the procedure in [6], the efforts required are merely 
two FFTs and a recursive procedure to compute the 
impulse response either from real cepstrum or from root 
moments. Therefore the complexities are lowest. Note that 
coefficients scaling are used to handle the unit-circle zeros’ 

numerical problem. Also, while we compute the real 
cepstrum sequence, zero-padding are necessary to reduce 
the aliasing effect. During the process, there’s no need to 
unwrap the phase or find the roots. Neither do we need to 
begin with an odd-length equiripple linear-phase filter and 
get the square root magnitude response. The resultant 
minimum phase filter magnitude response will be exactly 
the same as the original one. 

 
Table 1. Comparison between the proposed method and several 
existing methods in the open literature. 

 [1] [2] [3] [6] [4] 
proposed 

method 

Herrmann’s  

approach [1] 
v v v v*1 v  

factorization*2 RF CC DC RM NR RC 

Phase-unwrapping  v     

FFT  2 3 2  2 

Iteration v*3    v  

minimum-phase 

filter’s magnitude 

square

root*4 

square

root 

square 

root 

the 

same 

square

root 

the  

same 

Low complexity    v  v 

*1: The prototype is not necessarily an equiripple one. 
*2: RF: root-finding, CC: complex cepstrum, DC: differential 
cepstrum, RM: root moment, NR: Newton-Raphson iteration, RC: 
real cepstrum 
*3: The specific iterative procedure depends on which 
root-finding algorithm is applied. 
*4: Square root of the prototype’s magnitude response. 
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Fig. 1. Construction of minimum phase filter from a mixed phase sequence. (a) Real cepstrum     , i.e. the even part of 

complex cepstrum     , can be effectively computed by                   without phase unwrapping and root-finding. 

(b) Reconstruct       from its even part    .  (c)       is obtained by passing     through a proper allpass filter      

by canceling its non-causal part.
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Fig. 2. Equiripple lowpass linear phase and minimun phase 

filters with length 18 (a) Amplitude response (b) Phase 

response and (c) Zero-pole plot. 
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Fig. 3. Lowpass mixed phase and minimum phase filters 

with length 13 (a) Amplitude response (b) Phase response 

and (c) Zero-pole plot.
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