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ABSTRACT

Line Spectrum Pair (LSP) decomposition is a technique de-
veloped for robust representation of the coefficients of a Lin-
ear Predictive (LP) model. It has favourable properties with
respect to root loci and quantisation noise. In this article, we
will explore the properties of LSP polynomials when they
are used to represent quadratic models of form A2(z) and
A(z)z−mA(z−1). The quadratic models show intriguing prop-
erties in LSP decomposition, which can be used to develop a
Levinson-type algorithm.

1. INTRODUCTION

In speech coding, th Line Spectrum Pair (LSP) decompo-
sition is a widely used representation of coefficients of the
Linear Predictive (LP) model [1]. The mathematical prop-
erties were first presented by Schüssler [2], even though it
was Soong who brought them into the attention of speech
coding community [3]. Their use in speech coding is war-
ranted by several favourable properties; i) the stability of the
synthesis filter is easily translated to interlacing properties
of Line Spectral Frequencies (LSFs), ii) the representation is
robust in the presence of quantisation noise and iii) the LSF
domain is, in speech coding, a perceptually suitable domain
for inter-frame interpolation [4]. Due to these reasons, LSP
polynomials are the most widely used representation for LP
coefficients and, moreover, they are also well appreciated as
features in speech recognition.

However, the mathematical properties of the LSP decom-
position have generally not been as much appreciated. For
one thing, the LSP polynomials have a close connection to
the Levinson-recursion, which can be used to solve equations
with Toeplitz matrices [5]. In addition, the LSFs have inter-
esting inter-model interlacing properties [6]. In this article,
we will show yet more intriguing mathematical properties of
the LSP decomposition in relation to quadratic models.

2. BACKGROUND

2.1 Line Spectrum Pair

In contrast to convention of Soong [3], we will adopt a
slightly more general notation to accommodate for the more
general decomposition defined by Schüssler [2]. Thus, we
will define the LSP decomposition of an mth order polyno-
mial A(z) as

Pk[A(z)] = A(z)+ z−m−kA(z−1)
Qk[A(z)] = A(z)− z−m−kA(z−1)

(1)

where k ≥ 0 is an integer. For k = 1 we obtain the conven-
tional form of LSP. It follows trivially for all k ≥ 0 that

A(z) =
1
2
{Pk[A(z)]+Qk[A(z)]} . (2)

In the following, when there is no danger of confusion, we
will omit A(z) from Pk[A(z)] and Qk[A(z)] and write simply
Pk(z) and Qk(z).

Provided that A(z) has its zeros inside the unit circle, the
LSP polynomials Pk(z) and Qk(z) are, respectively, symmet-
ric and antisymmetric, that is, Pk(z) = z−m−kPk(z−1) and
Qk(z) = −z−m−kQk(z−1). Moreover, their zeros are inter-
laced on the unit circle. Conversely, these properties are
necessary and sufficient to guarantee that A(z) has its zeros
inside the unit circle [2, 3].

2.2 Levinson recursion

In the solution of symmetric Toeplitz equations, the Levinson
recursion is a classic [5, 7]. On the mth iteration we have [7]

Rmam = [s 2
m 00 . . . 0]T (3)

where Rm is the m×m principal sub-matrix of a symmet-
ric Toeplitz matrix R, vector am is the m× 1 solution to the
Toeplitz problem and s m a scalar.

On each recursion step we define

aT
m+1 = [aT

m, 0]+ G m[0, JaT
m] (4)

where J is the row reversal matrix and G m is the mth re-
flection coefficient. This coefficient G m is defined such that
the residual energy s 2

m+1 = aT
m+1Rm+1am+1 is minimised,

which also ensures that the structure of Eq. 3 is retained on
the (m+ 1)th step. The relation of Eq. 4 can be expressed in
terms of the LSP polynomials as

Am+1(z, G m) =
1 + G m

2
P1[Am(z)]+

1− G m

2
Q1[Am(z)]. (5)

Often, when the explicit value of G m is irrelevant, we will
omit G m from Am+1(z, G m) and write Am+1(z).

Note that the zeros of Am+1(z, G m) are symmetric with
G m and G −1

m with respect to the unit circle. That is,

Am+1(z, G m) = g z−m−1Am+1(z
−1, G −1

m ) (6)

where g is a scaling coefficient [8]. The properties of
Am+1(z, G m) and Am+1(z, G −1

m ) are thus, on the unit circle,
equivalent and moreover, G m and G −1

m are in this sense inter-
changeable. However, in order to retain stability, we have to
choose such a G m that all poles of A−1

m+1(z, G m) are within the
unit circle.

3. QUADRATIC FORMS

With quadratic forms of order 2m we refer to two kinds of
polynomials, the direct and indirect forms, which we will



define as A2(z) and A(z)z−mA(z−1), respectively. The two
forms are related by the property

∣

∣A2(z)
∣

∣ =
∣

∣A(z)z−mA(z−1)
∣

∣ for z = eiq . (7)

It is immediately obvious that the indirect form
A(z)z−mA(z−m) is symmetric, whereas the structure of
A2(z) is hidden in the coefficients. However, the direct
quadratic form is more practical in applications, since
its inverse can be made stable, but we shall see in the
following that the indirect form has other, readily tractable,
unsurpassed properties.

3.1 Residual energy

The residual energy s 2 of a linear predictive model is given
by s 2 = aT Ra, where matrix R is the symmetric Toeplitz
autocorrelation matrix of the input signal and a is the coeffi-
cient vector of the model.

For a quadratic model the residual energy can be cal-
culated as follows. Let a and Ca be the coefficient vec-
tor and convolution matrix of A(z). The direct quadratic
form A2(z) is then, in matrix form, Caa. The indirect form
A(z)z−mA(z−1) is CaJa, where matrix J is the row-reversal
matrix.

For the residual of the indirect and direct quadratic mod-
els s i and s d , respectively, we then have

s 2
i = aT JT CT

a
RCaJa = aT CT

a
RCaa = s 2

d (8)

since JT CT
a
RCaJ = CT

a
RCa by symmetry. In other words,

the residual of the indirect and direct quadratic forms are
equal. Consequently, minimisation of the residual energy of
the indirect form also minimises the direct form.

3.2 Quadratic Line Spectrum Pair

First of all, note that the squared LSP polynomials have the
following trivial properties

P
2
k(z) = Pk(z)z

−m−k
Pk(z

−1)

Q
2
k(z) = −Qk(z)z

−m−k
Qk(z

−1)
(9)

and by substitution of Eq. 2 we obtain

P
2
k(z) = A2(z)+ z−2m−2kA2(z−1)+ 2A(z)z−m−kA(z−1)

Q
2
k(z) = A2(z)+ z−2m−2kA2(z−1)−2A(z)z−m−kA(z−1).

(10)

With these relationships, we can rewrite the LSP decomposi-
tion of the direct quadratic form as

Pk[A
2(z)] =

1
4

(

1 + z2l−k
)

{

P
2
l [A(z)]+Q

2
l [A(z)]

}

+
1
2

(

1− z2l−k
)

Pl [A(z)]Ql[A(z)]

Qk[A
2(z)] =

1
4

(

1− z2l−k
)

{

P
2
l [A(z)]+Q

2
l [A(z)]

}

+
1
2

(

1 + z2l−k
)

Pl [A(z)]Ql[A(z)]

(11)

where l is an integer. In the trivial case of 2k = l, these equa-
tions reduce to

P2l[A
2(z)] =

1
2

[

P
2
l [A(z)]+Q

2
l [A(z)]

]

Q2l[A
2(z)] = Pl[A(z)]Ql [A(z)].

(12)

Similarly, the indirect quadratic form A(z)z−mA(z−1) has

Pk
[

A(z)z−mA(z−1)
]

=
1
4

{

P
2
l [A(z)]−Q

2
l [A(z)]

}

(

1 + z−k
)

Qk
[

A(z)z−mA(z−1)
]

=
1
4

{

P
2
l [A(z)]−Q

2
l [A(z)]

}

(

1− z−k
)

(13)

and with k = 0 we have (l ≥ 0)

P0
[

A(z)z−mA(z−1)
]

=
1
2

{

P
2
l [A(z)]−Q

2
l [A(z)]

}

Q0
[

A(z)z−mA(z−1)
]

≡ 0.
(14)

With the LSP polynomials defined, we can now continue to
study their properties in the next sections.

3.3 Root loci

Given a minimum-phase polynomial A(z), we know that the
LSP polynomials (Eq. 1) have their zeros interlaced on the
unit circle. Since A(z) is minimum-phase, then also A2(z)
is minimum-phase and its LSP polynomials have also zeros
interlaced on the unit circle. From Eq. 12 we can there-
fore readily conclude that the zeros of P2

l [A(z)] + Q2
l [A(z)]

and P2
l [A(z)]Q2

l [A(z)] are interlaced. That is, importantly, the
roots of P

2
l [A(z)]+Q

2
l [A(z)] lie on the unit circle. This ratio-

nale holds for l even, but can readily be extended to l odd.
On the other hand, since P0[A(z)z−mA(z−1)] =

A(z)z−mA(z−1) and from Eq. 14 we can readily see
that P2

l [A(z)]−Q2
l [A(z)] has all its zeros off the unit circle.

The root loci of Eq. 13 is less attractive, since it has the same
zeros as in Eq. 14, but also trivial roots interlaced on the unit
circle.

3.4 Spectral Magnitude and Envelope

In the above section we showed that P2
k(z)−Q2

k(z) has all
its zeros off the unit circle, while P2

k(z) +Q2
k(z) has all ze-

ros on the unit circle. However, now we will show that the
spectral envelop of P2

k(z) + Q2
k(z) is equal to the spectrum

of P2
k(z)−Q2

k(z). Recall that the zeros of P2
k(z)+Q2

k(z) are
interlaced with the zeros of P2

k(z) and Q2
k(z) and that both

P2
k(z) and Q2

k(z) are real and non-negative and non-positive,
respectively, on the unit circle (see Appendix A, Lemma 1).
Then if the magnitudes of P2

k(z)+ Q2
k(z) and P2

k(z)−Q2
k(z)

are equal, it follows that

i. P
2
k(zi)+Q

2
k(zi) =P

2
k(zi)−Q

2
k(zi)

⇒ Q
2
k(zi) =−Q

2
k(zi) ⇒ Q

2
k(zi) = 0

ii. P
2
k(zi)+Q

2
k(zi) =−

[

P
2
k(zi)−Q

2
k(zi)

]

⇒ P
2
k(zi) =−P

2
k(zi) ⇒ P

2
k(zi) = 0.

The magnitudes of P2
k(z) + Q2

k(z) and P2
k(z) − Q2

k(z) thus
coincide exactly at the discrete zeros of Pk(z) and Qk(z).
In other words, P

2
k(z) − Q

2
k(z) is the spectral envelope of

P2
k(z)+Q2

k(z). See Fig. 1 for illustration.
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Figure 1: Magnitude spectra of P2
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4. SYMMETRIC LSP METHOD – THE QUADRATIC
LEVINSON ALGORITHM

In terms of the Levinson recursion, we have, correspond-
ing to Eqs. 2 and 5, with Pm(z) = P1[Am(z)] and Qm(z) =
Q1[Am(z)], the following relation

Am+1(z)z
−m−1Am+1(z

−1) =
[

a 2P2
m(z)− (1− a )2Q2

m(z)
]

= h
[

l P2
m(z)− (1− l )Q2

m(z)
]

(15)

where a = 1+G
2 , h and l =

a −
√

a (1−a )

2a −1 are scalars. Similar
equations for the direct quadratic form can be calculated, but
since they contain cross-terms of P(z) and Q(z) they are not
as tractable.

Since the spectral properties of P2
m(z) + Q2

m(z) and
P2

m(z)−Q2
m(z) are similar, we can, instead of Eq. 15, on each

iteration optimise the modified quadratic function

y (l ) = l P2
m(z)+ (1− l )Q2

m(z). (16)

In the following, we will find that this modified function has
tractable properties in view of the residual energy optimisa-
tion.

We are now ready to develop a Levinson-type recursion
for the quadratic form. The initial condition is A0(z)= 1. Our
objective is, for each iteration m, to minimise the residual
energy with the quadratic form defined as in Eq. 16.

Denote the coefficient vectors of P2
m(z) and Q2

m(z) by p̃m

and q̃m, respectively. The residual energy ˆs 2
m of the modified

quadratic function y (l ) (Eq. 16) is then

ˆs 2
m =

[

l p̃T
m +(1− l )q̃T

m

]

Rm [l p̃m +(1− l )q̃m] . (17)

The minimal residual energy can be calculated by partial dif-
ferentiation and setting to zero ¶ ˆs 2

m/¶ l = 0. Solving for l
yields

l =
(q̃m − p̃m)T Rmq̃m

(p̃m − q̃m)T Rm(p̃m − q̃m)
. (18)

We can readily see that the denominator is positive since R is
positive definite. Likewise, in the numerator, the term q̃T Rq̃
is positive, while the term p̃T Rq̃ is shown to be negative in

Appendix A, Lemma 2. Consequently, l is always positive
l > 0.

In Eq. 15, we could have, without loss of generality, de-
fined z = 1− l and arrived to an equation for z not much
unlike Eq. 18. By the same rationale we find that z > 0 and
thus z = 1− l > 0. Combining, we have l ∈ (0,1).

As noted earlier, we can use this optimal l from Eq. 18
in Eq. 15 albeit we used Eq. 16 in optimisation.

4.1 Algorithm

The Levinson-type algorithm for quadratic models can then
be stated as

1. Let A0(z) = 1 and m = 0.
2. Calculate P(z) and Q(z) from Eq. 1.

3. Calculate l from Eq. 18 and let a =
l −

√
l (1−l )

2l −1 .
4. Set Am(z) = a P(z)+ (1− a )Q(z).
5. If m ≥ N then stop. Otherwise let m := m+ 1 and return

to Step 2.

The resulting model is the direct quadratic form A2
N(z).

5. ANTISYMMETRIC LSP METHOD

The Quadratic Levinson algorithm was based on optimising
Eq. 16. Comparing to Eq. 12, we notice that in practice,
we have only optimised the symmetric LSP polynomial of
A2(z). However, the antisymmetric LSP polynomial of A2(z)
in Eq. 12 has significant value in itself. Namely, we can,
from any antisymmetric polynomial with zeros only on the
unit circle, construct a squared model with an identical anti-
symmetric LSP polynomial.

Specifically, given an antisymmetric polynomial E(z)
with zeros on the unit circle, we can find its zeros and or-
ganise them in two interlacing sets. Based on these two sets
of zeros, construct two polynomials P(z) and Q(z). Letting
P1(z) = P(z) and Q1(z) = Q(z), and by using Eq. 2 we obtain
a polynomial A(z) = 1

2 [P(z)+Q(z)] which fulfills Eq. 12, that
is, Q2[A2(z)] = h E(z), where h is a scalar.

This does not, however, yet give us an optimal choice of
E(z). A well-warranted choice would be the antisymmetric
LSP model of higher order such as

Rq =
s 2

2
[+1, 0, 0, . . .0, −1]T (19)

where R is the N ×N symmetric Toeplitz positive definite
autocorrelation matrix and q the coefficient vector of the de-
sired antisymmetric polynomial E(z). Another choice would
be the antisymmetric eigenvector corresponding to the small-
est eigenvalue of R. The eigenvector corresponding to the
smallest eigenvalue is not, however, always antisymmetric
and therefore we may not always find a suitable antisymmet-
ric eigenvector. This topic is therefore left for further study.

6. EXPERIMENTS AND DISCUSSION

Figure 2 shows magnitude spectrum performance of the
Quadratic Levinson algorithm and the antisymmetric LSP
method, compared to original signal and conventional LP.
Each model is of the same model order m = 10. Informal
experiments show that both quadratic models tend to show
larger formant bandwiths and magnitudes, as is expected.
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Figure 2: The magnitude spectra of a male vowel /a:/ (FFT),
conventional LP model, Quadratic Levinson and the antisym-
metric LSP method (PQ). Each spectra is separated by 5dB
for visual clarity and each model is of the same order m = 12.

The improvements generally come at the expense of for-
mant resolution; closely spaced formants are not as accu-
rately modelled as in conventional LP.

In the Quadratic Levinson algorithm, the final model
A2

N(z) is optimal in the sense that on each iteration the algo-
rithm minimises the residual energy of the modified model
with equal spectral envelop. However, minimisation on each
recursion step does not guarantee that the overall algorithm
reaches the global minimum.

On the other hand, the antisymmetric LSP method is opti-
mised (depending on the method) only for the antisymmetric
part of the squared model. Experiments show that the sym-
metric part, which is determined by the method, yields often
a residual which is larger by an order of magnitude.

Concluding, we have presented theory and algorithms for
quadratic models using properties of Line Spectrum Pair de-
composition. The theoretical results offer intriguing insight
into the LSP polynomials, but a lot of work remains in their
application.
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A. APPENDIX

Lemma 1. Let A(z) = å m
k=−m akzk be a symmetric polyno-

mial with all zeros on the unit circle each of multiplicity two
and the first (and last) coefficient positive. Then
1. A(eiq ) ∈ R and A(eiq ) ≥ 0 if A(1) 6= 0.
2. A(eiq ) ∈ R and A(eiq ) ≤ 0 if A(1) = 0.

Proof. Since each zero a = eiq of A(z) is of even
multiplicity, we can readily see that sign[A(ei(q +d ))] =

sign[A(ei(q −d ))] for a sufficiently small d . It follows that the
sign of A(eiq ) is thus equal for all values q .

If A(z) does not have a zero at z = 1, then A(eiq ) ≥ 0
since the value of A(z) is continuous and A(z) ≥ 0 for z ∈ R.
The first condition is thus satisfied.

If, however, A(z) has a double zero at z = 1, then it ex-
hibits a change of sign when going from the real axis to the
unit circle. This can be observed by setting two single ze-
ros at z = e±id and letting d approach zero d → 0. Due to
continuity, the second condition is then satisfied.

Lemma 2. Let P2(z) and Q2(z) be two symmetric polynomi-
als with all zeros on the unit circle each of even multiplicity,
and let p̂ and q̂ be the coefficient vectors of P2(z) and Q2(z),
respectively. Furthermore, let R be a real, positive definite,
symmetric Toeplitz matrix. Then
1. p̂Rq̂ > 0 if neither or both P2(z) and Q2(z) have a dou-

ble zero at z = 1.
2. p̂Rq̂ < 0 if either but not both of P2(z) and Q2(z) have

a double zero at z = 1.

Proof. From [9, 10] we know that a Toeplitz matrix R can,
with a Vandermonde matrix V and diagonal matrix D, be de-
composed as R = VT DV. The decomposition is ambiguous
and we can thus choose one, or, in the special case of expo-
nentials on the unit circle, two of the Vandermonde rows.
This specifies the whole matrix [10]. The matrix D has pos-
itive coefficients iff R is positive definite.

Recall that an m×m Vandermonde matrix consist of rows
of exponential progressions a n

k . The product Va of a vector
a and the Vandermonde matrix V thus corresponds to evalu-
ating the polynomial A(z) at points a k.

We can then rewrite the product as p̂T Rq̂ =
p̂T VT DVq̂. Due to Lemma 1, the values of P2(z)
and Q2(z) are always positive and negative, respectively,
P2(eiq ) ≥ 0 and Q2(eiq ) ≤ 0 and, consequently, Vp̂ ≥ 0
and Vq̂ ≤ 0. Finally, since D is strictly positive, then
p̂T VT DVq̂ < 0.
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