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ABSTRACT
An efficient update algorithm is presented which tracks the
left and right singular vectors and singular values of a trans-
fer matrix, using input and output vectors and without explic-
itly computing the matrix itself. Such an algorithm has many
potential applications in multiple-input multiple-output wire-
less communication systems in which the channel parameters
change slowly with time. Examples of two such applications,
eigenbeamforming and adaptive V-BLAST, are presented.

1. INTRODUCTION

There has been vast interest in recent years in the exploita-
tion of spatial diversity through the use of multiple element
antennas (MEAs) at each end of a communications link, gen-
erally referred to as multiple-input multiple-output (MIMO)
systems. In this scenario, the channel response is described
by a complex matrix, such that the equivalent channel model
is given by the linear system

rk = Hsk +nk

where the Nt elements of sk are the input signals at the trans-
mitter antenna elements, sampled at intervals k, and the cor-
responding output signals at the Nr receive antennas are the
elements of rk. The additive noise is nk. The transfer func-
tion H may be static or time-varying – for simplicity, it will
be assumed herein to be static.

In many applications, two examples of which are given
herein, the signal processing requires the singular value de-
composition (SVD) of the Nr×Nt matrix H, which is given
by

H = UW VH

where the columns of the Nr×Nr matrix U= [u1 · · · uNr ]
and the Nt ×Nt matrix V = [v1 · · · vNt ] are the left and
right singular vectors, respectively. The elements of the Nr×
Nt matrix W are non-zero only on the diagonal, with W ii = w i
for i = 1, . . . ,min(Nt ,Nr) where w i is the ith largest singular
value. For simplicity of presentation in the following, it will
be assumed that Nt = Nr = N.

Communications systems which operate on frame-based
data typically include a training sequence in each frame from
which the channel matrix is estimated. The SVD is then gen-
erated from this estimate, requiring significant computation.
The main source of performance degradation is the devia-
tion of the estimated singular vectors from their true values,
which is highly dependent on the accuracy of the channel
estimate.

The channel matrix typically varies slowly with respect
to the symbol interval, therefore it might be possible to

achieve a better estimate of the SVD components if the chan-
nel parameters are ‘learned’, building on prior knowledge
to improve the estimate at each step [1]. Furthermore, the
complexity may be reduced if the SVD components, i.e., the
singular vectors and singular values, were estimated directly
without explicitly computing a channel matrix estimate.

This paper presents an algorithm which updates the es-
timates of some or all of the singular values and the corre-
sponding left and right singular vectors, based on prior esti-
mates. In Sec. 3, two applications are presented in which the
algorithm can be used to avoid the explicit estimation of H.

The underlying update equation is

Hn = a Hn−1 +(1− a )rnsH
n (1)

where n = kNp, i.e., the updates are based on known training
symbol vectors inserted periodically into the unknown data
stream sk. Thus, the objective is to determine the SVD com-
ponents which satisfy the relationship

UnW nVH
n = a Un−1W n−1VH

n−1 +(1− a )rnsH
n .

A full SVD computation has a complexity O(N3). Sub-
space tracking techniques have been proposed which track
the eigenvalues l n,i = w 2

n,i and eigenvectors (left singular
vectors) of the covariance matrix R = E

{
rkrH

k

}
, for exam-

ple in [2]. In [3], a method was presented for updating the
eigenvalues and right singular vectors; in both these cases,
obtaining the other set of singular vectors requires compu-
tationally expensive matrix multiplications. An adaptive al-
gorithm was proposed in [4] for the MIMO application de-
scribed in Sec. 3.1, in which a small perturbation was ap-
plied at the transmitter (right singular vectors), and the pre-
ferred sign for its application to the transmitter weight was
determined at the receiver and fed back. This method has a
complexity of O(N3) and converges more slowly and with
less accuracy than the algorithm proposed herein, which has
complexity O(N2). The new algorithm has a similar form to
that presented in [2], but addresses the more complex prob-
lem of determining the singular values and both left and right
singular vectors and is derived in a more concise fashion.

2. SVD UPDATE ALGORITHM

The updated transfer function can be written as a first order
perturbation of the prior estimate, i.e.,

Hn = Hn−1 +E (2)

where, from (1),

E = (1− a )
(
rnsH

n −Hn−1
)
. (3)



The matrices of singular vectors at update n can be written as
rotations of those at update n−1 as follows

Un = Un−1(I+A) and Vn = Vn−1(I+B). (4)

As Un−1 and Vn−1 are unitary, up to a first order approxima-
tion,

A+AH = B+BH = 0. (5)

The perturbation equation (2) can be rewritten to give

Hn = Un−1 (W n−1 +F)VH
n−1.

where F = UH
n−1EVn−1, i.e., from (3)

F = (1− a )
(
UH

n−1rnsH
n Vn−1− W n−1

)
. (6)

Denoting the ith columns of Un−1 and Vn−1 by un−1,i and
vn−1,i, respectively, the (i, j)th element of F is given by

fi j = uH
n−1,iEvn−1, j.

2.1 Singular value update

It is shown in [5, Sec. V.4.2] that the singular values of the
perturbed matrix, Hn, are approximated by

w n,i = w n−1,i + fii +O(‖E‖2
2).

Using the definition (6) and noting that the singular values
are real, the singular value update equation is

w n,i = a w n−1,i +(1− a )R
{
uH

n−1,irnsH
n vn−1,i

}
.

2.2 Singular vector update

From (4), the singular vector update equations are

un,i = un−1,i +
N

å
j=1

a jiun−1, j i = 1, . . . ,N (7)

vn,i = vn−1,i +
N

å
j=1

b jivn−1, j i = 1, . . . ,N. (8)

where the (i, j)th elements of A and B are ai j = uH
n−1,iun, j

and bi j = vH
n−1,ivn, j, respectively, for i 6= j, and aii = bii = 0.

The result in [5, Sec. V.4.2] can be used to show that for i < j

a ji =

(
w n−1,i f ji + w n−1, j f ∗i j

)

(w 2
n−1,i− w 2

n−1, j)
+O(‖E‖2

2)

b ji =

(
w n−1,i f ∗i j + w n−1, j f ji

)

(w 2
n−1,i− w 2

n−1, j)
+O(‖E‖2

2).

Also, from (5), ai j =−a∗ji and bi j =−b∗ji.
The singular values are ordered such that w i > w j for

i < j. The elements of the rotation matrices can therefore
be approximated using

a ji ≈ f ji

w n−1,i
=

(1− a )uH
n−1, jrnsH

n vn−1,i

w n−1,i
i < j

and

b ji ≈
f ∗i j

w n−1,i
=

(1− a )vH
n−1, jsnrH

n un−1,i

w n−1,i
i < j.

Writing xi =
√

1− a vH
n−1,isn and yi =

√
1− a uH

n−1,irn,
the off-diagonal elements of F are

fi j = x∗j · yi i 6= j.

The update equations (7) and (8) then become, for i =
1, . . . ,N,

un,i = un−1,i +
N

å
j=i+1

x∗i y j

w n−1,i
un−1, j−

i−1

å
j=1

x jy∗i
w n−1, j

un−1, j

vn,i = vn−1,i +
N

å
j=i+1

x jy∗i
w n−1,i

vn−1, j−
i−1

å
j=1

x∗i y j

w n−1, j
vn−1, j.

These can be efficiently updated by noting the following re-
lationships

pu
0 =

N

å
j=1

y jun−1, j =
√

1− a rn

pu
i =

N

å
j=i+1

y jun−1, j = pu
i−1− yiun−1,i i = 1, . . . ,N−1

and

qu
1 = 0

qu
i+1 =

i

å
j=1

x∗i y j

w n−1, j
vn−1, j = qu

i +
xi

w n−1,i
un−1,i i = 1, . . . ,N−1

and vectors pv
i and qv

i have equivalent definitions for the right
singular vectors. Then the singular vectors can be efficiently
updated by recursing the following equations

un,i = un−1,i +
x∗i

w n−1,i
pu

i − y∗i q
u
i

vn,i = vn−1,i +
y∗i

w n−1,i
pv

i − x∗i q
v
i .

After updating, the singular vectors must be normalised to
ensure they have unit length.

2.3 Algorithm

The efficient, recursively implemented SVD update algo-
rithm [6] can be summarised as shown in Table 1.

3. APPLICATIONS

The algorithm derived in Sec. 2 has been applied to two
MIMO systems which are briefly described here.

3.1 Eigenbeamforming

A fixed wireless MIMO-OFDM broadband access system
was considered in [7]. N = 8 elements were used in the
transmitter and receiver arrays, which were mounted approx-
imately 60 m above street level in Toronto, Canada, with the



Table 1: Efficient SVD update algorithm, for p singular val-
ues and singular vector pairs.

INITIALISE:
rn =

√
(1− a )rn

sn =
√

(1− a )sn
qu = qv = 0
pu = rn
pv = sn
i = 1

RECURSE:
xi = vH

n−1,isn

yi = uH
n−1,irn

k = xi/w n−1,i
x = yi/w n−1,i
pu = pu− yi ·un−1,i
pv = pv− xi ·vn−1,i
un,i = un−1,i + k ∗pu− y∗i q

u

vn,i = vn−1,i + x ∗pv− x∗i q
v

w n,i = a w n−1,i +R {x∗i · yi}
qu = qu + k un−1,i
qv = qv + x vn−1,i
un,i = un,i/‖un,i‖
vn,i = vn,i/‖vn,i‖
i = i+1

line-of-sight blocked by a small cluster of buildings. The sys-
tem employs OFDM at a centre frequency near 5.7 GHz, pro-
viding frequency-non-selective responses for each subcar-
rier. Wideband measurements were used to characterise the
channel and to evaluate the expected system performance.

The height above traffic ensured that the channel re-
sponse matrix, H, had only small variations with time, at-
tributed to the effects of wind on the tall buildings and an-
tenna mounting structure. These temporal characteristics
support the use of a closed-loop approach to signalling, in
which the transmitter weight vectors are fed back from the
receiver based on channel response estimates. The proposed
signalling scheme was eigenbeamforming, in which the data
substreams are weighted at the transmitter array such that
they are emitted along the estimated right singular vectors,
vi, and are weighted at the receiver array using vectors tuned
to the left singular vectors, ui. If the channel estimates are
ideal, the equivalent system model for the ith data substream
is

ŝi = uH
i Hvis+uH

i n = w isi + n (11)

where n is additive noise at the receiver output.
The sparsity of the scattering environment resulted

in highly correlated spatial responses on the transmitter-
receiver link pairs, and consequently there were only a small
number of significant singular values of H; in fact, only two
eigenmodes supported transmission.

The SVD algorithm described above was applied to up-
date the transmitter and receiver array weights, given by the
dominant pair of right and left singular vectors, respectively.
In the simulations shown here, the initial conditions were
selected to be V(0) = U(0) = I, and w i(0), i = 1, . . . ,8
were randomly selected to have values in (0,1]. The first
2000 transmitted vectors (0.04 s.) were used for training,
and thereafter every Np = 10th transmitted signal vector was

assumed to be known at the receiver for updating the SVD es-
timate. These training symbol vectors were BPSK sequences
with perfect autocorrelation properties [7]. For the training
period, a = 0.999, and during the subsequent data phase,
a = 0.99. The average ratio of received signal power to sen-
sor noise power was 12 dB.

Fig. 1 shows the largest four true singular values (dot-
ted lines) and the estimated singular values (solid lines) over
the first two seconds of measured channel responses. While
the magnitude is marginally underestimated, the trend is fol-
lowed quite accurately.

When the estimated singular vectors, ûi and v̂i, suffer
from errors, (11) degrades to

ŝi = w iûH
i uivH

i v̂isi +Zi + n

where the interference term resulting from the mismatch be-
tween the estimated and true singular vectors is, to a first-
order approximation,

Zi = å
j 6=i

[
w iûH

i uivH
i v̂ j + w jûH

i u jvH
j v̂ j

]
s j.

In Fig. 2, the absolute projections of the estimated left singu-
lar vectors onto the respective true singular vectors are shown
for the two dominant modes; the performance for the right
singular vectors is very similar. After initial adaptation, the
separation between the modes is better than 15 dB. Because
the channel parameters change slowly in this environment,
it was seen in [7] that, even allowing for feedback delays,
the update algorithm tracks the singular values and vectors
with sufficient accuracy to achieve a threefold increase in
data throughput using the eigenbeamforming technique rela-
tive to a system with single element antennas.
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Figure 1: Estimated (solid lines) and true (dotted lines) sin-
gular values for eigenbeamforming application.

3.2 Adaptive V-BLAST

Another application for this SVD update algorithm is in the
adaptive implementation of V-BLAST. V-BLAST is a suc-
cessive interference cancellation scheme [8], in which zero-
forcing weight vectors are formed at each step to null the in-
terference from undetected signals, and detected signals are
cancelled from the system equation. The signals are detected
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Figure 2: Projection of estimated singular vectors onto true
ones for eigenbeamforming application.

in order of decreasing SNR, thereby minimising the propa-
gation of detection errors. At step i, the undetected symbol
which has the largest SNR is determined from the pseudo-
inverse of H with i− 1 columns, which correspond to pre-
viously detected and cancelled signals, zeroed. The pseudo-
inverse of H is

H† = V ¯W UH

where the diagonal elements of ¯W are given by

¯w i =
{

1/w i w i > 0
0 otherwise.

The V-BLAST algorithm therefore requires the pseudo-
inverse, and hence the SVD, of matrix H with i−1 columns
zeroed at steps i = 1, . . . ,N. It was proposed in [9] that, rather
than estimating H and generating multiple SVDs each time,
the SVD components of H and its subsets could be tracked.
The details of the adaptive V-BLAST algorithm were pre-
sented in [9]; herein it is noted that the algorithm derived in
Sec. 2 is suitable for updating the SVD components as new
pilot symbols are received.

Bit error rate results obtained using the SVD update al-
gorithm for an adaptive V-BLAST system using QPSK at an
SNR of 12 dB with N = 4 are shown vs. the number of up-
date samples in Fig. 3 for a fixed H, starting from initial
conditions U(0) = V(0) = I and w i(0) = 1, i = 1, . . . ,N.
The mean performance, averaged over ten runs, using the
frame-based V-BLAST is also shown. The training sequence
in both cases was the same as used in Sec. 3.1. The perfor-
mance of the adaptive V-BLAST using the efficient SVD up-
date algorithm converges rapidly to close to the performance
for a receiver with perfect channel knowledge, demonstrating
that the estimated SVDs of each partial channel matrix con-
verges, as required. The asymptotic performance is better
than that obtained using the frame-based V-BLAST imple-
mentation, which does not use prior channel knowledge and
has higher computational complexity.

4. CONCLUSIONS

An efficient SVD update algorithm has been presented which
recursively computes left and right singular vectors and sin-
gular values of a transfer matrix H. It has been shown to
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Figure 3: Bit error rate using efficient SVD update algorithm
applied to adaptive V-BLAST for QPSK with N = 4.

work well in a closed-loop MIMO fixed wireless access sys-
tem using eigenbeamforming, where inaccurate SVDs lead
to self-interference. It has also been used in conjunction with
the V-BLAST algorithm to provide an adaptive implementa-
tion with significantly lower complexity and asymptotically
better performance than the frame-by-frame version.

5. ACKNOWLEDGEMENTS

This work was supported in part by Avendo Wireless Inc.
and by Defence Research and Development Canada.

REFERENCES

[1] B. van Veen and K. Buckley, “Beamforming: a versatile
approach to spatial filtering,” IEEE ASSP Mag., vol. 5,
pp. 4–24, Apr. 1988.

[2] B. Champagne, “Adaptive eigendecomposition of data
covariance matrices based on first-order perturbations,”
IEEE Trans. Sig. Proc., vol. 42, pp. 2758–2770, Oct.
1994.
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