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ABSTRACT

Locally adaptable mathematical morphology (AMM) uses circular
structuring elements whose sizes can vary arbitrarily over the image
plane. In this paper, we present an efficient algorithm to implement
the dilation, erosion, closing and opening operators in arbitrary di-
mensions. The core of the method relies on adapting the separable
Euclidean distance transformation (DT) introduced by Maurer in
[IEEE Trans. PAMI, 25(2):265-270,2003]. The algorithm is both
more accurate and significantly faster than the previously published
method.

1. INTRODUCTION

In [1, 2], we developed adaptable mathematical morphology, which
extends the traditional translation-invariant binary morphology so
that the size of the structuring element can be specified for each
pixel of the image, provided that they are shaped like balls of a
distance metric. The implementation uses a special raster-scanning
similar to Danielsson’s Euclidean DT algorithm [3] in 2 dimensions
and Ragnemalm’s corner DT [4] for higher dimensions.

When using circular or spherical balls, i.e. when one considers
the Euclidean metric, this approach is only an approximate solution
and can mislabel some pixels. Also, for images in more than 2 di-
mensions, it requires 2P scans over the image which leads to a high
computational cost. In this paper, we show that these AMM opera-
tors can be computed both more precisely and faster using a varia-
tion of the separable Euclidean DT algorithms proposed by Maurer
[5], Meijster [6] and Hirata [7].

The paper is organized as follows. In section 2, we recall the
basic principles and algorithm of AMM from [1, 2]. Section 3
discusses the limits of this raster scanning algorithm. Section 4
presents the new algorithms for AMM dilation and closing which
overcome those limits. Finally, section 5 discusses the computa-
tional complexity of the method and compares it experimentally
with the previous approach.

2. AMM PRINCIPLES

In [1, 2], we laid out the principles of AMM. The adaptable dilation
of an object X in a binary image / in D dimensions by structuring
elements whose sizes are stored in an image S is defined as

XoS={x+h:xeX,|h|| <Sx)} )]

where pixel locations are represented by D-dimensional vectors v =
(v1,v2,...,vp) and we consider the Euclidean metric

D 1
Ivil= (Y va)? 2

for circular and spherical structuring elements. The adaptable ero-
sion is defined by duality as

XoS=X‘aSs)° 3)

where X¢ = {x: x ¢ X } is the set complement of X. For the opening
and closing operators, we define a reflected dilation operator & as

XS ={y:Dx(y) <S(¥)} S

where Dy is the Euclidean distance transformation of X, i.e.

Dx(p) = min(|lp —x||) (5)

The AMM closing XS and opening Xg are then defined as

x5 = x&8)es (6)
Xs = (X89S 7

In [1, 2], we prove that these operators are indeed morphologi-
cal closing and opening filters. X5 is increasing, anti-extensive and
idempotent, X is increasing, extensive and idempotent.

From the implementation point of view, the most complex op-
erator is the adaptive dilation of equation (1). In [2], it is computed
by noticing that

XS = {x+h:xeX, |h|<S(x)}
{x+h:xeX,|h|—S(x) <0}
{y:3x€X, |y —x| - S(x) < 0}

= {y:Dxgs(y) <0} ®)

where Dy ¢ is a modified distance transformation defined as

Dx.s(p) = min(|[p — x| - S(x)) ©

This modified DT is computed by generating
V(p) = argmin(||p — x|| — S(x)) 10)
xeX

which is the Voronoi partition of the image plane corresponding
to the distance Dy s. The algorithm initializes with V(p) = p
and Dy s(p) = —S(p) for object pixels and V(p) = (eo,0) and
Dy s(p) = oo for the background. The distances are then propa-
gated from neighbor to neighbor. V(p + n) replaces V(p) as the

object pixel closest to p if

lp—V(p+n)||-S(V(p+n)) < Dx s(p) an

In 2D, this is implemented using a raster scanning similar to
Danielsson’s Euclidean DT algorithm [3]. Firstly, The image is



Figure 1: AMM operators: (top-left) Original image / of size 512 x
512 with object X in black. (top-right) Structuring element image
S chosen as S(p) = (512 — py)/14. (center-left) Dilation X & S.
(center-right) Erosion X © S (bottom-left) Closing X S (bottom-
right) Opening Xj.

scanned line by line, from top to bottom. Each line is first scanned
from left to right considering (11) for the left and up neighbors, then
from right to left considering the right neighbor. Secondly, the dual
scan from bottom to top and right to left is performed.

In D > 3 dimensions, scans similar to Ragnemalm’s corner Eu-
clidean DT [4] are used. It uses 22 scans from each of the corners
to its opposite, considering the D direct neighbors on the side of the
originating corner at each scan.

The effect of the AMM operators on a synthetic image is illus-
trated at figure 1. There are numerous possible applications. Essen-
tially, when the projective geometry in the image acquisition pro-
cess makes translation invariance an incorrect assumption, AMM
becomes a relevant tool. This includes traffic control cameras where
vehicles higher in the image are further away and appear smaller
than those at the bottom, weather satellite imagery where both the
wide camera angle and the earth curvature introduce geometric dis-
tortion, ... AMM also offers a practical implementation of several of
Roerdink’s group morphologies [8]. It is also possible to use AMM
for adaptive morphology where the SE sizes depend on the local
pixel values. This is particularly relevant for range imagery. Finally,
in medical imaging anatomical knowledge can drive the choice of
SE sizes that are locally adapted to the organs imaged. The ability
to work in more than 2 dimensions is critical in medical imaging
where 3D and 4D image modalities are common.

3. LIMITATIONS OF THE RASTER SCANNING
ALGORITHM

While it is intuitive and relatively easy to implement, the method
described in section 2 for computing Dy s and X &S suffers from a
number of limitations.

Firstly, storing the whole vectorial image V is quite memory
consuming, as it requires storing D coordinates per pixels in D di-
mensions. Typically, this requires more memory than the image
itself.

Secondly, the raster scanning similar to Ragnemalm’s corner
DT [4] requires 2P scans over the image, which becomes time-
consuming for D > 3 dimensions.

Thirdly, equation (11) includes a square root computation
which cannot be avoided. While all fast Euclidean DT algorithms
use the square of the Euclidean distance during propagation and
only compute one square root per pixel as post-processing, this al-
gorithm uses the square root operation at every propagation test.
That is D.2P times for the corner DT in D dimensions.

Finally, the result is only an approximation of Dy g. In order to
be exact, the tiles of the Voronoi partition V, i.e. the the sets

T(x)={p:V(p) =x} 12)

should be connected sets. While in [2] we prove this property for the
continuous plane, it is not true on a discrete lattice. For instance, us-
ing direct neighbors only, if the object is X = {(0,3),(3,0),(2,2)}
and S(p) is a constant s for all pixels, the distance Dy s((0,0)) is

mistakenly computed to be 3 — s instead of its true value v/8 — s.
Indeed, the information from object pixel (2,2) can not reach (0,0)
because its direct neighbors (1,0) and (0, 1) are closer to (3,0) and
(0,3) than (2,2), respectively.

Whatever the neighborhood used, there can be a few pixels
where Dy g is slightly overestimated. Therefore, a few pixels of
X @ S can be mislabelled as belonging to (X & S)°.

4. FAST AMM ALGORITHMS

In this paper, we overcome these limitations by proposing a new
algorithm to compute the adaptive dilation. We rewrite (1) as

XS = {y:IxeX. |y—x|<Sx)} (13)
— {y:3xeX.|y—x|P-S(x)? <0}
= {y:3xeX, |y —x|*+ M -5(x)*) <M?}
where M can be any number that respects

M > max(S(p)) (14)
pel

With such a choice, (M? — S(p)?) is positive for all p. Then,
we can interpret the expression [y — x||* + (M? — S(x)?) of (13)
as the square of a Euclidean distance. Instead of considering the
pixel locations x and y as D-dimensional vectors, we see them as
(D + 1)-dimensional vectors with their (D + 1)th component equal
to 0. Then, we apply a transform fg(.) to the set X which moves its
points x “out of plane”.

F5(X) = {x+e,/M? ~S(x)? :x € X} (15)

where e | is the unit vector in the (D + 1)th dimension. After such
a transform, equation (13) can be rewritten as

XoS = {y:yp1 =03 eX =f(X),|ly —x|* < M*}
= {y:yp+1 =0,Dx/(y) <M} (16)



forall pcl do
if p € X then
D3.(p) — M* - S(p)*
else
Di,(p) — M?

ComputeEDT(D)Z(, )

forall pe/ do
if D%/ (p) <M? then
PEXBS
else
peX®S)*

Algorithm 1: X ¢ S

for all pc/ do
if p € X then
D}(p) <0
else
D% (p) «— M?

ComputeEDT(D%)

forall pe/ do
if D%(p) <S(p)? then
pEX®S
else
p € (X&S)©

Algorithm 2: X3S

where Dy is the (D + 1)-dimensional Euclidean DT applied on the
set X' = fg(X). Intuitively, in 2D, this means that instead of us-
ing circular structuring elements of varying radiuses S(x), we use
3D spherical structuring elements of constant radius M, but the ob-
ject pixels have been moved out of the image plane at a distance

VM2 —8(x)2.

The interest of this approach is that efficient implementations
of the Euclidean DT have been the subject of a significant amount
of research since Danielsson’s paper in 1980. An in-depth review
can be found in chapter 2 of [9].

On the other hand, if we want to work in the D-dimensional
image and not in (D + 1) dimensions, we can not use many of the
existing Euclidean DT algorithms. The propagation algorithm such
as the raster scanning or ordered propagation methods explored in
[2] do not work. Indeed, while in D + 1 dimensions, the tiles

T(x')={p:x' =arg min (|[p-y')} (17
y'inX

are convex (hyper)-polyhedra surrounding their translated object
pixel x/, in the D-dimensional image, the tiles

T(x) = {p:x=arg min(|p —yIP+M*=5S(y))}  (18)

are not. They are not even star-shaped and actually, 7'(x) can be
non empty and still not include x.

Fortunately, this problem has been solved previously by Saito
[10], Hirata [7], Meijster [6] and Maurer [5] who proposed separa-
ble Euclidean DT algorithms. The D-dimensional problem is split
into D 1-dimensional problems. When processing the dth dimen-
sion, one produces an intermediate result

Dx a(p) =xg(i1<lp)(|\p*><\|) (19)

ford=1—Ddo
forii =1— N; do

for id—l =1 —>Nd_] do
for id+l =1 —>Nd+1 do

for ip =1 — Np do
ComputelDT(D,,d, iy, ...,ig—1,ig+1,---,iD)

Procedure 1: ComputeEDT(D,)

k<0
for j=1— N;do
pJ — (i17"'7id713j7id+17"'7iD)
if k < 2 then
ke k+1, gx < De(Pj), i = J
else

while k> 2 and (j —hi1).gx — (J — hi)-gr—1 — (i —
hi—1)-De(P3) = (j — hx—1)-(j — hie)-(hg — 1) > 0 do
k—k

k—k+1, g <—De(pj), hy — j

m—k,k—1
for j=1— N;do
while k < m and g + (hy — j)? > gre1 + (hge1 — 7)? do
k—k+1
De(pj) < gk + (e — j)?)

Procedure 2: ComputelDT(D,,d,iy,...,ig—1,ig+1;---,iD)

Xy(p) ={x=(x1,...,xp) : Vi>d,x; = p;,} NX (20)

where X;(p) is the set of object points with the same coordinates
as p for i > d. Initially, Dy ¢ is O for objects pixels and e for back-
ground pixels. Then, the algorithms proceed iteratively by comput-
ing, for all p,

D = min (\/Dxg4-1(q)>+|p—al? 21
xa(p)= _min (\/Dxg(@?+Ip—al?) @D

Lq(p) ={q:Vi#d,pi=qi} (22)

where L;(p) is the line of pixels with all coordinates identical to
p’s except for the dth. After iterating over d = 1 — D, we get
Dx = Dx p.

How (21) is implemented practically varies between authors.
Obviously all of them get rid of the square root operation by com-
puting D)zf_ 4 instead of Dy 4. Also, they use the alignment of p and

q to simplify |lp — ql|. Equation (21) becomes

Dxa(p)*= min (Dxq_1(Q)*+(pa—qa)®)  (23)
q€Ly(p)

Beyond that, computations can be further accelerated by con-
sidering information from the other pixels in the same line to re-
duce the search space L; over which the minimum is computed.
Saito [10] proposes a heuristic method which speeds up the process
practically but has the same asymptotical complexity as (21), i.e. in
order to compute Dy 4 at the Ny points of a line, it requires o(Ng)
distance computations. The others [7, 5, 6] give very similar solu-
tions that are optimal in the sense that N, points are computed with
a o(Ny) complexity.

Explaining the details of these methods is beyond the scope of
this paper. In Procedure 2, Compute1 DT implements the algorithm
described by Maurer [5]. Using this tool, it is simple to compute
X @S and XOS.
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Figure 2: CPU times to compute the AMM closing of a 3D image
of varying size using either the old method (corner DT) or the new
algorithm (separable DT).

Algorithm 1 computes X & S for an image of size N; X N x
... X Np. Tt uses (16) and the (D + 1)-dimensional Euclidean DT.
First, it considers the (D + 1)th dimension for which the square of
the distance is M% —§ (p)2 for object pixels and e for background
pixels. Then, it calls the ComputeEDT procedure to iterate over
the remaining D dimensions of the image. Finally, it thresholds the
result by M?.

Algorithm 2 computes X &S using (4) and the D-dimensional
Euclidean DT. First, it assigns a distance 0 to object pixels and oo to
the background, then it calls the ComputeEDT procedure to iterate
over the D dimensions of the image. Finally, it thresholds locally

by S(p).

In the initialization step of both algorithms, we use M? instead
of oo without affecting the final result, since M? is larger than the
threshold used at the end of the algorithm.

Finally, all AMM operators can be computed from X &S and
X &S using equations (3), (6) and (7).

5. COMPUTATIONAL COMPLEXITY

The method described here has numerous advantages compared to
the raster scanning of section 2 and its limitations discussed at sec-
tion 3. Firstly, it does not need to compute explicitly the Voronoi
diagram V which reduces the memory requirements to a minimum.
Secondly, in addition to the initialization and threshold steps, it uses
D scans over the image instead of 2P, which is significantly lower
for D > 3. Thirdly, it uses no square root operation whatsoever
instead of D.2P per pixel. Finally, it computes the exact distance
transformation and therefore the exact dilations X & S and X &S.

Beyond these theoretical considerations, the computational cost
was assessed experimentally on a Pentium IV computer at 3GHz,
with 512 kB of cache memory. Varying the object X and structur-
ing elements sizes S has no effect on the CPU times needed. In 2
dimensions, the new algorithm does not improve significantly on the
old method beyond its improved accuracy. Typically, a 1000 x 1000
image is closed in 0.2 second by both algorithms.

Obviously, the competitive advantage of the new algorithm ap-
pears in D > 3 dimensions. At figure 2, the relationship between
image size and execution time is assessed using a 3D test image of
size M x M x %M made of anisotropic voxels of size 1 x 1 x 1.5,
with M varying between 50 and 540. Both the corner DT approach
and the new separable algorithm are used to implement the AMM
closing. This experiment shows that the algorithm described in this
paper is more than 4 times faster than the former approach. In both

cases, the time required per voxel is approximately constant.

An interesting phenomenon appears for the separable DT. CPU
times show spikes for M = k.2 with a large m. For these values, the
algorithm is impaired by the inefficiency of the CPU’s cache during
the inter-slice scan. For instance, for a slice of 512 x 512 = 218
voxels, if voxels are coded with 4 bytes each, two pixels at the same
location on consecutive slices have memory addresses sharing the
same last 22 binary digits. Since those are used to compute the
cache address, this leads to multiple cache conflicts during the inter-
slice scan.

This problem can be solved in many ways, for instance by zero-
padding the image so that the slices have one more line and col-
umn. Computing the closing for an image of size 512 x 512 x 342
requires 222 or 86 seconds using the old or the new algorithm, re-
spectively. This goes down to 218 and 48 seconds respectively for
a 513 x 513 x 342 zero-padded image.

6. CONCLUSION

We have proposed a new algorithm to implement adaptive mathe-
matical morphology using (hyper)-spherical structuring elements in
D dimensions. Contrarily to the approximate raster scanning algo-
rithm used previously, it provides an exact result. In D > 3 dimen-
sions, it is significantly faster than the previous method.

REFERENCES

[1] O. Cuisenaire, “Locally adaptable mathematical morphology,”
submitted to ICIP’05.

[2] O. Cuisenaire, “Locally adaptable binary mathematical mor-
phology using distance transformations,” Technical Report
ITS-2004.30, Signal Processing Institute, EPFL, CH-1015
Lausanne, Switzerland, December 2004.

[3] PE. Danielsson, “Euclidean distance mapping,” Computer
Graphics and Image Processing, vol. 14, pp. 227-248, 1980.

[4] 1. Ragnemalm, “The euclidean distance transformation in ar-
bitrary dimensions,” Pattern Recognition Letters, vol. 14, pp.
883-888, 1993.

[5] C.R. Maurer Jr, R. Qi, and V. Raghavan, “A linear time al-
gorithm for computing exact euclidean distance transforms of
binary images in arbitrary dimensions,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 25, no. 2, pp.
265-270, 2003.

[6] A. Meijster, J.B.T.M. Roerdink, and W.H. Hesselink, “A
general algorithm for computing distance transforms in lin-
ear time,” in Mathematical Morphology and its applications
to image and signal processing, J. Goutsias, L. Vincent, and
D.S. Bloomberg, Eds., 2000, pp. 331-340.

[7] T. Hirata, “A unified linear-time algorithm for computing dis-
tance maps,” Information Processing Letters, vol. 58, no. 3,
pp. 129-133, 1996.

[8] J.B.T.M Roerdink, “Group morphology,” Pattern Recognition,
vol. 33, pp. 877-895, 2000.

[9] O. Cuisenaire, Distance transformations: fast algorithms and
applications to medical image processing, Ph.D. thesis, Uni-
versité catholique de Louvain (UCL), Louvain-la-Neuve, Bel-
gium, October 1999.

[10] T. Saito and J.I. Toriwaki, “New algorithms for euclidean
distance transformations of an n-dimensional digitised picture
with applications,” Pattern Recognition, vol. 27, no. 11, pp.
1551-1565, 1994.



	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis ( I ) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking ( I ) ...
	MonPmOR5-Geophysical Signal Processing ( I ) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis ( II ) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing ( II ) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking ( II  ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV ( I ) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits  ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL  ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (  ...
	ThuAmOR12-3DTV ( II ) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications ( I )
	ThuPmOR4-Architecture and VLSI Hardware ( I )
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics ( I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware ( II )
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Olivier Cuisenaire



