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ABSTRACT

Locally adaptable mathematical morphology (AMM) uses circular
structuring elements whose sizes can vary arbitrarily over the image
plane. In this paper, we present an efficient algorithm to implement
the dilation, erosion, closing and opening operators in arbitrary di-
mensions. The core of the method relies on adapting the separable
Euclidean distance transformation (DT) introduced by Maurer in
[IEEE Trans. PAMI, 25(2):265-270,2003]. The algorithm is both
more accurate and significantly faster than the previously published
method.

1. INTRODUCTION

In [1, 2], we developed adaptable mathematical morphology, which
extends the traditional translation-invariant binary morphology so
that the size of the structuring element can be specified for each
pixel of the image, provided that they are shaped like balls of a
distance metric. The implementation uses a special raster-scanning
similar to Danielsson’s Euclidean DT algorithm [3] in 2 dimensions
and Ragnemalm’s corner DT [4] for higher dimensions.

When using circular or spherical balls, i.e. when one considers
the Euclidean metric, this approach is only an approximate solution
and can mislabel some pixels. Also, for images in more than 2 di-
mensions, it requires 2D scans over the image which leads to a high
computational cost. In this paper, we show that these AMM opera-
tors can be computed both more precisely and faster using a varia-
tion of the separable Euclidean DT algorithms proposed by Maurer
[5], Meijster [6] and Hirata [7].

The paper is organized as follows. In section 2, we recall the
basic principles and algorithm of AMM from [1, 2]. Section 3
discusses the limits of this raster scanning algorithm. Section 4
presents the new algorithms for AMM dilation and closing which
overcome those limits. Finally, section 5 discusses the computa-
tional complexity of the method and compares it experimentally
with the previous approach.

2. AMM PRINCIPLES

In [1, 2], we laid out the principles of AMM. The adaptable dilation
of an object X in a binary image I in D dimensions by structuring
elements whose sizes are stored in an image S is defined as

X⊕S = {x+h : x ∈ X ,‖h‖< S(x)} (1)

where pixel locations are represented by D-dimensional vectors v =
(v1,v2, ...,vD) and we consider the Euclidean metric

‖v‖= (
D

∑
d=1

v2
d)

1
2 (2)

for circular and spherical structuring elements. The adaptable ero-
sion is defined by duality as

X	S = (Xc⊕S)c (3)

where Xc = {x : x /∈X} is the set complement of X . For the opening
and closing operators, we define a reflected dilation operator ⊕̌ as

X⊕̌S = {y : DX (y) < S(y)} (4)

where DX is the Euclidean distance transformation of X , i.e.

DX (p) = min
x∈X

(‖p−x‖) (5)

The AMM closing XS and opening XS are then defined as

XS = (X⊕̌S)	S (6)
XS = (X	̌S)⊕S (7)

In [1, 2], we prove that these operators are indeed morphologi-
cal closing and opening filters. XS is increasing, anti-extensive and
idempotent, XS is increasing, extensive and idempotent.

From the implementation point of view, the most complex op-
erator is the adaptive dilation of equation (1). In [2], it is computed
by noticing that

X⊕S = {x+h : x ∈ X ,‖h‖< S(x)}
= {x+h : x ∈ X ,‖h‖−S(x) < 0}
= {y : ∃ x ∈ X ,‖y−x‖−S(x) < 0}
= {y : DX ,S(y) < 0} (8)

where DX ,S is a modified distance transformation defined as

DX ,S(p) = min
x∈X

(‖p−x‖−S(x)) (9)

This modified DT is computed by generating

V(p) = arg min
x∈X

(‖p−x‖−S(x)) (10)

which is the Voronoi partition of the image plane corresponding
to the distance DX ,S. The algorithm initializes with V(p) = p
and DX ,S(p) = −S(p) for object pixels and V(p) = (∞,∞) and
DX ,S(p) = ∞ for the background. The distances are then propa-
gated from neighbor to neighbor. V(p+n) replaces V(p) as the
object pixel closest to p if

‖p−V(p+n)‖−S(V(p+n)) < DX ,S(p) (11)

In 2D, this is implemented using a raster scanning similar to
Danielsson’s Euclidean DT algorithm [3]. Firstly, The image is



Figure 1: AMM operators: (top-left) Original image I of size 512×
512 with object X in black. (top-right) Structuring element image
S chosen as S(p) = (512− px)/14. (center-left) Dilation X ⊕ S.
(center-right) Erosion X 	 S (bottom-left) Closing XS (bottom-
right) Opening XS.

scanned line by line, from top to bottom. Each line is first scanned
from left to right considering (11) for the left and up neighbors, then
from right to left considering the right neighbor. Secondly, the dual
scan from bottom to top and right to left is performed.

In D≥ 3 dimensions, scans similar to Ragnemalm’s corner Eu-
clidean DT [4] are used. It uses 2D scans from each of the corners
to its opposite, considering the D direct neighbors on the side of the
originating corner at each scan.

The effect of the AMM operators on a synthetic image is illus-
trated at figure 1. There are numerous possible applications. Essen-
tially, when the projective geometry in the image acquisition pro-
cess makes translation invariance an incorrect assumption, AMM
becomes a relevant tool. This includes traffic control cameras where
vehicles higher in the image are further away and appear smaller
than those at the bottom, weather satellite imagery where both the
wide camera angle and the earth curvature introduce geometric dis-
tortion, ... AMM also offers a practical implementation of several of
Roerdink’s group morphologies [8]. It is also possible to use AMM
for adaptive morphology where the SE sizes depend on the local
pixel values. This is particularly relevant for range imagery. Finally,
in medical imaging anatomical knowledge can drive the choice of
SE sizes that are locally adapted to the organs imaged. The ability
to work in more than 2 dimensions is critical in medical imaging
where 3D and 4D image modalities are common.

3. LIMITATIONS OF THE RASTER SCANNING
ALGORITHM

While it is intuitive and relatively easy to implement, the method
described in section 2 for computing DX ,S and X⊕S suffers from a
number of limitations.

Firstly, storing the whole vectorial image V is quite memory
consuming, as it requires storing D coordinates per pixels in D di-
mensions. Typically, this requires more memory than the image
itself.

Secondly, the raster scanning similar to Ragnemalm’s corner
DT [4] requires 2D scans over the image, which becomes time-
consuming for D≥ 3 dimensions.

Thirdly, equation (11) includes a square root computation
which cannot be avoided. While all fast Euclidean DT algorithms
use the square of the Euclidean distance during propagation and
only compute one square root per pixel as post-processing, this al-
gorithm uses the square root operation at every propagation test.
That is D.2D times for the corner DT in D dimensions.

Finally, the result is only an approximation of DX ,S. In order to
be exact, the tiles of the Voronoi partition V, i.e. the the sets

T (x) = {p : V(p) = x} (12)

should be connected sets. While in [2] we prove this property for the
continuous plane, it is not true on a discrete lattice. For instance, us-
ing direct neighbors only, if the object is X = {(0,3),(3,0),(2,2)}
and S(p) is a constant s for all pixels, the distance DX ,S((0,0)) is
mistakenly computed to be 3− s instead of its true value

√
8− s.

Indeed, the information from object pixel (2,2) can not reach (0,0)
because its direct neighbors (1,0) and (0,1) are closer to (3,0) and
(0,3) than (2,2), respectively.

Whatever the neighborhood used, there can be a few pixels
where DX ,S is slightly overestimated. Therefore, a few pixels of
X⊕S can be mislabelled as belonging to (X⊕S)c.

4. FAST AMM ALGORITHMS

In this paper, we overcome these limitations by proposing a new
algorithm to compute the adaptive dilation. We rewrite (1) as

X⊕S = {y : ∃x ∈ X ,‖y−x‖< S(x)} (13)

= {y : ∃x ∈ X ,‖y−x‖2−S(x)2 < 0}
= {y : ∃x ∈ X ,‖y−x‖2 +(M2−S(x)2) < M2}

where M can be any number that respects

M ≥max
p∈I

(S(p)) (14)

With such a choice, (M2− S(p)2) is positive for all p. Then,
we can interpret the expression ‖y−x‖2 + (M2 − S(x)2) of (13)
as the square of a Euclidean distance. Instead of considering the
pixel locations x and y as D-dimensional vectors, we see them as
(D + 1)-dimensional vectors with their (D + 1)th component equal
to 0. Then, we apply a transform fS(.) to the set X which moves its
points x “out of plane”.

fS(X) = {x+e⊥.
√

M2−S(x)2 : x ∈ X} (15)

where e⊥ is the unit vector in the (D + 1)th dimension. After such
a transform, equation (13) can be rewritten as

X⊕S = {y : yD+1 = 0,∃x′ ∈ X ′ = fS(X),‖y−x′‖2 < M2}
= {y : yD+1 = 0,DX ′(y) < M} (16)



for all p ∈ I do
if p ∈ X then

D2
X ′(p)←M2−S(p)2

else
D2

X ′(p)←M2

ComputeEDT(D2
X ′ )

for all p ∈ I do
if D2

X ′(p) < M2 then
p ∈ X⊕S

else
p ∈ (X⊕S)c

Algorithm 1: X⊕S

for all p ∈ I do
if p ∈ X then

D2
X (p)← 0

else
D2

X (p)←M2

ComputeEDT(D2
X )

for all p ∈ I do
if D2

X (p) < S(p)2 then
p ∈ X⊕̌S

else
p ∈ (X⊕̌S)c

Algorithm 2: X⊕̌S

where DX ′ is the (D+1)-dimensional Euclidean DT applied on the
set X ′ = fS(X). Intuitively, in 2D, this means that instead of us-
ing circular structuring elements of varying radiuses S(x), we use
3D spherical structuring elements of constant radius M, but the ob-
ject pixels have been moved out of the image plane at a distance
√

M2−S(x)2.

The interest of this approach is that efficient implementations
of the Euclidean DT have been the subject of a significant amount
of research since Danielsson’s paper in 1980. An in-depth review
can be found in chapter 2 of [9].

On the other hand, if we want to work in the D-dimensional
image and not in (D + 1) dimensions, we can not use many of the
existing Euclidean DT algorithms. The propagation algorithm such
as the raster scanning or ordered propagation methods explored in
[2] do not work. Indeed, while in D+1 dimensions, the tiles

T (x′) = {p : x′ = arg min
y′ inX ′

(‖p−y′‖)} (17)

are convex (hyper)-polyhedra surrounding their translated object
pixel x′, in the D-dimensional image, the tiles

T (x) = {p : x = arg min
yinX

(‖p−y‖2 +M2−S(y)2)} (18)

are not. They are not even star-shaped and actually, T (x) can be
non empty and still not include x.

Fortunately, this problem has been solved previously by Saito
[10], Hirata [7], Meijster [6] and Maurer [5] who proposed separa-
ble Euclidean DT algorithms. The D-dimensional problem is split
into D 1-dimensional problems. When processing the dth dimen-
sion, one produces an intermediate result

DX ,d(p) = min
x∈Xd(p)

(‖p−x‖) (19)

for d = 1→D do
for i1 = 1→ N1 do

...
for id−1 = 1→ Nd−1 do

for id+1 = 1→ Nd+1 do
...
for iD = 1→ ND do

Compute1DT(De,d, i1, ..., id−1, id+1, ..., iD)
...

...
Procedure 1: ComputeEDT(De)

k← 0
for j = 1→ Nd do

pj← (i1, ..., id−1, j, id+1, ..., iD)
if k < 2 then

k← k +1, gk←De(pj), hk← j
else

while k ≥ 2 and ( j − hk−1).gk − ( j − hk).gk−1 − (hk −
hk−1).De(pj)− ( j−hk−1).( j−hk).(hk−hk−1) > 0 do

k← k−1
k← k +1, gk←De(pj), hk← j

m← k, k← 1
for j = 1→ Nd do

while k < m and gk +(hk− j)2 > gk+1 +(hk+1− j)2 do
k← k +1

De(pj)← gk +(hk− j)2)

Procedure 2: Compute1DT(De,d, i1, ..., id−1, id+1, ..., iD)

Xd(p) = {x = (x1, ...,xD) : ∀i > d,xi = pi,}∩X (20)

where Xd(p) is the set of object points with the same coordinates
as p for i > d. Initially, DX ,0 is 0 for objects pixels and ∞ for back-
ground pixels. Then, the algorithms proceed iteratively by comput-
ing, for all p,

DX ,d(p) = min
q∈Ld(p)

(
√

DX ,d−1(q)2 +‖p−q‖2) (21)

Ld(p) = {q : ∀i 6= d, pi = qi} (22)

where Ld(p) is the line of pixels with all coordinates identical to
p’s except for the dth. After iterating over d = 1 → D, we get
DX = DX ,D.

How (21) is implemented practically varies between authors.
Obviously all of them get rid of the square root operation by com-
puting D2

X ,d instead of DX ,d . Also, they use the alignment of p and
q to simplify ‖p−q‖. Equation (21) becomes

DX ,d(p)2 = min
q∈Ld(p)

(DX ,d−1(q)2 +(pd −qd)2) (23)

Beyond that, computations can be further accelerated by con-
sidering information from the other pixels in the same line to re-
duce the search space Ld over which the minimum is computed.
Saito [10] proposes a heuristic method which speeds up the process
practically but has the same asymptotical complexity as (21), i.e. in
order to compute DX ,d at the Nd points of a line, it requires ◦(N2

d )
distance computations. The others [7, 5, 6] give very similar solu-
tions that are optimal in the sense that Nd points are computed with
a ◦(Nd) complexity.

Explaining the details of these methods is beyond the scope of
this paper. In Procedure 2, Compute1DT implements the algorithm
described by Maurer [5]. Using this tool, it is simple to compute
X⊕S and X⊕̌S.
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Figure 2: CPU times to compute the AMM closing of a 3D image
of varying size using either the old method (corner DT) or the new
algorithm (separable DT).

Algorithm 1 computes X ⊕ S for an image of size N1 ×N2×
...×ND. It uses (16) and the (D + 1)-dimensional Euclidean DT.
First, it considers the (D + 1)th dimension for which the square of
the distance is M2−S(p)2 for object pixels and ∞ for background
pixels. Then, it calls the ComputeEDT procedure to iterate over
the remaining D dimensions of the image. Finally, it thresholds the
result by M2.

Algorithm 2 computes X⊕̌S using (4) and the D-dimensional
Euclidean DT. First, it assigns a distance 0 to object pixels and ∞ to
the background, then it calls the ComputeEDT procedure to iterate
over the D dimensions of the image. Finally, it thresholds locally
by S(p).

In the initialization step of both algorithms, we use M2 instead
of ∞ without affecting the final result, since M2 is larger than the
threshold used at the end of the algorithm.

Finally, all AMM operators can be computed from X ⊕ S and
X⊕̌S using equations (3), (6) and (7).

5. COMPUTATIONAL COMPLEXITY

The method described here has numerous advantages compared to
the raster scanning of section 2 and its limitations discussed at sec-
tion 3. Firstly, it does not need to compute explicitly the Voronoi
diagram V which reduces the memory requirements to a minimum.
Secondly, in addition to the initialization and threshold steps, it uses
D scans over the image instead of 2D, which is significantly lower
for D ≥ 3. Thirdly, it uses no square root operation whatsoever
instead of D.2D per pixel. Finally, it computes the exact distance
transformation and therefore the exact dilations X⊕S and X⊕̌S.

Beyond these theoretical considerations, the computational cost
was assessed experimentally on a Pentium IV computer at 3GHz,
with 512 kB of cache memory. Varying the object X and structur-
ing elements sizes S has no effect on the CPU times needed. In 2
dimensions, the new algorithm does not improve significantly on the
old method beyond its improved accuracy. Typically, a 1000×1000
image is closed in 0.2 second by both algorithms.

Obviously, the competitive advantage of the new algorithm ap-
pears in D ≥ 3 dimensions. At figure 2, the relationship between
image size and execution time is assessed using a 3D test image of
size M×M× 2

3 M made of anisotropic voxels of size 1× 1× 1.5,
with M varying between 50 and 540. Both the corner DT approach
and the new separable algorithm are used to implement the AMM
closing. This experiment shows that the algorithm described in this
paper is more than 4 times faster than the former approach. In both

cases, the time required per voxel is approximately constant.

An interesting phenomenon appears for the separable DT. CPU
times show spikes for M = k.2m with a large m. For these values, the
algorithm is impaired by the inefficiency of the CPU’s cache during
the inter-slice scan. For instance, for a slice of 512× 512 = 218

voxels, if voxels are coded with 4 bytes each, two pixels at the same
location on consecutive slices have memory addresses sharing the
same last 22 binary digits. Since those are used to compute the
cache address, this leads to multiple cache conflicts during the inter-
slice scan.

This problem can be solved in many ways, for instance by zero-
padding the image so that the slices have one more line and col-
umn. Computing the closing for an image of size 512×512×342
requires 222 or 86 seconds using the old or the new algorithm, re-
spectively. This goes down to 218 and 48 seconds respectively for
a 513×513×342 zero-padded image.

6. CONCLUSION

We have proposed a new algorithm to implement adaptive mathe-
matical morphology using (hyper)-spherical structuring elements in
D dimensions. Contrarily to the approximate raster scanning algo-
rithm used previously, it provides an exact result. In D ≥ 3 dimen-
sions, it is significantly faster than the previous method.
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