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ABSTRACT
In this work, we derived the probability of gross errors in direction
of arrival (DOA) estimation for any arbitrary array under assump-
tions of two dimensional array geometry, isotropic array elements,
deterministic incoming signal and AWGN. We proposed a metric
function that can be used to optimize the array geometry, based on
this derivation and available Cramér-Rao Bound (CRB) analysis in
the literature. We used genetic algorithm as an optimization tool in
our attempt to seek answer to the generic problem: For a given two
dimensional, bounded surface and maximum allowable probability
of gross error at certain signal-to-noise ratio (SNR) value, what is
the optimum geometry that maximizes the azimuth DOA estimation
performance?

1. INTRODUCTION

In most of the array signal processing applications, main interest is
to obtain an accurate estimation of the Direction of Arrival (DOA)
of a received signal by combining the observed samples of the signal
at different sensor locations. Estimation accuracy of a given array
depends upon certain characteristics of the array geometry as much
as the estimation algorithm employed. Therefore, the path that leads
to accurate estimation of DOA should start with correct localization
of the array elements.

Given the number of array elements and the bounding surface,
optimization of localization of the array elements can be based
on two main criteria. The �rst criterion is Cramer-Rao Bound
(CRB) which determines the maximum achievable estimation per-
formance. CRB on estimation of DOA has been analyzed widely
for different conditions and explicit formulas that relate the func-
tion to SNR and array sensor locations have already been derived
[1]-[8]. Second criterion is selected as the probability of gross er-
rors that may cause undesired ambiguous estimations. De�nitely
minimization of the probability of gross errors leads more accurate
DOA estimates, especially in low SNR values.

Optimization of array geometry has received signi�cant amount
of attention among researchers [9]-[13]. However, very few of them
takes the probability of gross errors into consideration [11] [12].
In this work, we start with this idea , further we state the relation
between CRB and the probability of gross errors and extend the
discussion to two dimensional arrays.

In Section 2, array manifold representation of two dimensional
arrays based on [14] is given. In Section 3, received signal is mod-
eled as a deterministic signal in AWGN. In Section 4, the probabil-
ity of gross errors is expressed. The following section brie�y states
previously obtained results on CRB. In Section 6, we proposed a
metric for optimization which simultaneously works on CRB for
�ne errors and probability of gross errors. In the last section we
summarized the optimization procedure and presented the results.

2. ARRAY MANIFOLD REPRESENTATION OF TWO
DIMENSIONAL ARRAYS

Geometry of a generic two dimensional array is given in Figure 1.
In the �gure locations of the sensors are represented by the position
vector p. Sensors are assumed to be isotropic. The azimuth angle

Figure 1: Two dimensional array geometry

of the incoming signal is given by θ Array sensors at the locations
pn = [ xn yn ]T receive the incoming signals. Received signal at
each sensor can be expressed as a delayed version of the incoming
signal g(t).

g (t;p) =

2664
g(t� τ1)
g(t� τ2)

...
g(t� τn)

3775 ;
where delay is a function of the array sensor locations and the inci-
dence angle τn = (�xn cosθ � yn sinθ)=c.

If g(t) is assumed to be a narrowband bandpass signal, it can be
represented as,

g(t) = Re
neg(t)e jωto

and the signal at the nth sensor is,

gn(t), g(t� τn) = Re
neg(t� τn)e jω(t�τn)

o
:

The narrowband assumption implies that the phase and the am-
plitude of the signal is unchanged during the maximum propagation
time across the sensors. eg(t� τn)�= eg(t)
Therefore, the complex envelope of gn(t) will beegn(t) = eg(t)e� jωτn ;

and

�
g(t) =

26664
e j

ω

c (x1 cosθ+y1 sinθ)

e j
ω

c (x2 cosθ+y2 sinθ)

...
e j

ω

c (xn cosθ+yn sinθ)

37775eg(t):



As a result, for any arbitrary N-element array, array manifold is
given by

A(θ) =

26664
e j

ω

c (x1 cosθ+y1 sinθ)

e j
ω

c (x2 cosθ+y2 sinθ)

...
e j

ω

c (xn cosθ+yn sinθ)

37775 : (1)

3. MODELING OF THE RECEIVED SIGNAL

Received signal vector of the array is2664
x1(t)
x2(t)
...

xn(t)

3775=
2664
g(t� τ1)
g(t� τ2)

...
g(t� τn)

3775+
2664
n1(t)
n2(t)
...

nn(t)

3775 :
The signal g(t) is assumed to be a known bandpass narrowband
signal and the noise n(t) is assumed to be white Gaussian process.
Noise is spatially uncorrelated between sensors.

After coherent demodulation and Nyquist rate sampling the
model can be reduced to the following [14],[8] and usually referred
to as narrowband time domain snapshot model.

x(k) =A(θ)g(k)+n(k) k = 1;2; � � � ;K
n(k)'s are independent, zero mean Gaussian random variables.

Efn(k)g = 0

E
n
n(k)nH(k)

o
= σ

2I

E
n
n(k)nH(l)

o
= 0

Under the assumptions stated, x(k) is Gaussian distributed with the
following properties,

Efx(k)g = A(θ)g(k)
Varfx(k)g = σ

2I

Note that, σ2 is the noise sample power in receivers bandwidth of
B and equals to 2N0B.

4. GROSS ERRORS

Probability density of one snapshot will be

p(x(k) j θ) = 1
πNσ2N

exp(� 1
σ2
kx(k)�A(θ)g(k)k2):

Since the snapshots are statistically independent, joint pdf of snap-
shots are obtained as,

p(x j θ) =
K
Õ
k=1

1
πNσ2N

exp(� 1
σ2
kx(k)�A(θ)g(k)k2):

The log-likelihood function is

ln p(x j θ) =C� 1
σ2

K
å
k=1
kx(k)�A(θ)g(k)k2 :

Let us suppose that there are two candidate angles of arrival θ1
and θ2. In hypothesis one, namely H1, direction of arrival is θ1.
Similarly, in hypothesis two (H2), direction of arrival is θ2 . Based
on the observation of snapshots we will decide whether H1 or H2 is
true.

H1 : x(k) =A(θ1)g(k)+n(k)
H2 : x(k) =A(θ2)g(k)+n(k)

The likelihood ratio test which minimizes the probability of the
wrong hypothesis decision (gross error) is

ψ , ln p(x j θ1)� ln p(x j θ2)
H2
7
H1
0:

When H1 is true, ψ becomes

ψ =
1

σ2

K
å
k=1
[g�(k)[AH(θ1)�AH(θ2)]+nH(k)]

[[A(θ1)�A(θ2)]g(k)+n(k)]�nH(k)n(k):

ψ is the sum of independent random numbers. Thus, for large num-
ber of samples, the distribution of ψ is approximately normal.

µ , E fψ j H1g (2)

=
2BE
σ2

kA(θ1)�A(θ2)k2 ;

where

E =
1
2B

K
å
k=1
g(k)g�(k)

is the energy of the received bandpass signal on any one of the sen-
sors. Here, a convenient de�nition of SNR is the signal energy to
noise power spectral density. That is, SNR = E=N0. Note that,
µ can be seen to be as the SNR times the square of the distance
between the two array manifold vectors corresponding the two dif-
ferent incidence angles.

Similarly,
E
n

ψ
2 j H1

o
= µ

2+2µ:

Therefore,
Varfψ j H1g= 2µ:

Finally, the probability of gross error is obtained by,

Pg = erfc(
r

µ

2
); (3)

where erfc is the complementary error function.

5. CRAMÉR-RAO BOUND FOR ESTIMATION OF
DIRECTION OF ARRIVAL

Cramér-Rao bounds on direction of arrival estimation have been
thoroughly analyzed in literature. By using the previous results in
references [1]-[8], CR bound on DOA estimation can easily be de-
rived for the model given in Section 3:

CRB(θ) =

"
4BE
σ2

ω2

c2
N
å
i=1
[(yi� yc)cosθ � (xi� xc)sinθ ]2

#�1
;

where, xc and yc are the coordinates of the center of the array given
by

xc =
1
N

N
å
i=1
xi; yc =

1
N

N
å
i=1
yi: (4)

6. PROPOSED METRIC

Let us now consider the function kA(θ1)�A(θ2)k2 that appears
explicitly in (2). In references [11] and [12], this particular function
is offered as a measure of similarity between two steering vectors
of each incidence angle. As (3) shows, it is obvious that the higher
the value of the function, the lesser the probability of gross errors.
By tracing the following analysis we will show that the term is also
related to the CRB.



Figure 2: Sample sketch of function kA(θ)�A(θ +φ)k2

Without loss of the validity of derivation given in Section 4, we
can take the center of array given in (4), as the reference point for
the array. Hence, (1) can be rewritten as,

A(θ),

26664
e j

ω

c ((x1�xc)cosθ+(y1�yc)sinθ)

e j
ω

c ((x2�xc)cosθ+(y2�yc)sinθ)

...
e j

ω

c ((xn�xc)cosθ+(yn�xc)sinθ)

37775 :

Thus, we can obtain the followings.

kA(θ)�A(θ +φ)k2 = 2N�Re
n
AH(θ)A(θ +φ)

o
(5)

= 2N�2
N
å
i=1
cos(

ω

c
((xi� xc)(cos(θ +φ)� cosθ)

+(yi� yc)(sin(θ +φ)� sinθ))):

The term in summation in (5) has a Taylor series expansion near
φ = 0 as,

1� φ
2

2
ω2

c2
[(yi� yc)cosθ � (xi� xc)sinθ ]2+H.O.T: (6)

By using (6) in (5), we obtain kA(θ)�A(θ +φ)k2 around φ = 0
approximated as;

kA(θ)�A(θ +φ)k2 �=
φ
2

2
ω2

c2
N
å
i=1
[(yi� yc)cosθ � (xi� xc)sinθ ]2 :

Hence, as function kA(θ)�A(θ +φ)k2 gets high around φ = 0,
CRB gets low. Figure 2 gives a sample sketch of the function.

Obviously, when φ = 0 the function is zero for all values of
θ . Steepness of the function around φ = 0 provides less estimation
error around the true bearing of the signal. In other words, CRB on
DOA estimation gets lower as the steepness increases. Obviously,
the function evaluating to zero along φ axis except φ = 0 and 2π
indicates totally ambiguous estimations and getting close to zero
means probability of gross errors becomes higher.

Based on the discussion above we de�ne the following metric
function:

Q(φ),min
θ

h
kA(θ)�A(θ +φ)k2

i
: (7)

Figure 3: Sketch of function Q(φ). Optimization wrt Pg and CRB
is shown

� Maximization of Q(φ) around φ = 0 indicates a lower CRB
based on the discussion in Section 5 and leads to a better �ne
error.

� Maximization of Q(φ) elsewhere indicates a lower probability
of gross error.

7. OPTIMIZATION BY USING GENETIC ALGORITHM

We �rst de�ne the bounded region that the sensors can be located.
Optimization starts with the setting of maximum allowable gross
error probability for a certain SNR. By using (3) and (2), we can
�nd the minimum value of Q(φ) satisfying this condition.

After setting this threshold, we should �nd the optimum array
geometry that has the steepest rising edge around φ = 0. Figure
3 gives the visualization of the procedure. Ambiguity region is de-
�ned as the region outside the �rst peaks of Q(φ) in both directions.

We applied genetic algorithm to the problem. Genetic algo-
rithm starts with a sample population. All population members are
created randomly restricted to the bounded area speci�ed. Array
elements are not allowed to be placed closer than 0.1λ . Candidates
are �ltered by comparing their Pg with respect to a threshold. Each
population member is assigned a �tness value associated with the
CRB. After crossover, offsprings are �ltered again and added to the
population. Process is repeated for a certain number iterations.

As an example, let us design an array that all array elements
should be in a circle that has a radius of 2λ and has the maximum
probability of gross error 10�5 at 5 dB SNR. The results obtained
with genetic algorithm is compared with the default uniform circu-
lar array (UCA). Figure 4 shows the optimized array geometry and
the UCA. Dashed line shows the bounds of the allowed space to
place the sensors. Figure 5 shows the function Q(φ) for each array
geometry. It is clearly seen that UCA does not satisfy the given Pg
speci�cation. If we take a close look at Figure 5 around φ = 0, we
can see that the DOA estimation variance for �ne errors of UCA is
slightly better than the nonuniform array. This can be seen in Fig-
ure 6 where achievable CRB of both geometries are sketched for all
values of incidence angle θ .

Gross error risk is signi�cantly reduced with a small compro-
mise of DOA estimation variance . The algorithm can be applied to
any arbitrary two dimensional region.

8. CONCLUSIONS

We proposed an optimization procedure in order to improve �ne
error variance under the condition of a given probability of gross
errors. These two parameters are inherently contradicting and op-



Figure 4: Array geometries for both UCA and optimized array

Figure 5: Q(φ) of both UCA and optimized array

timization of one of them does not necessarily lead to a good ar-
ray design.The proposed method outperforms especially when high
precision DOA estimates are needed while the number of sensors
are limited and the allowed region is large. Under these conditions,
using a uniform planar array leads to intolerable gross errors. The
problem may easily be reversed. Setting a DOA estimation variance
and optimizing for the best achievable gross error probability is an
another possible option with this method.
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