EXTRACTION OF 3D NAVIGATION SPACE IN
VIRTUAL URBAN ENVIRONMENTS

Tiirker Yilmaz and Ugur Giidiikbay

Department of Computer Engineering, Bilkent University
06800 Bilkent, Ankara, Turkey
Phone: +90 (312) 290 13 86, fax: +90 (312) 266 40 47, e-mail: {yturker, gudukbay }@cs.bilkent.edu.tr

ABSTRACT

Urban scenes are one class of complex geometrical environments in
computer graphics. In order to develop navigation systems for ur-
ban sceneries, extraction and cellulization of navigation space is one
of the most commonly used technique providing a suitable structure
for visibility computations. Surprisingly, there is not much work
done for the extraction of the navigable area automatically. Urban
models, except for the ones where the building footprints are used
to generate the model, generally lack navigation space information.
Because of this, it is hard to extract and discretize the navigable area
for complex urban scenery. In this paper, we propose an algorithm
for the extraction of navigation space for urban scenes in three-
dimensions (3D). Our navigation space extraction algorithm works
for scenes, where the buildings are in high complexity. The build-
ing models may have pillars or holes where seeing through them is
also possible. Besides, for the urban data acquired from different
sources which may contain errors, our approach provides a simple
and efficient way of discretizing both navigable space and the model
itself. The extracted space can instantly be used for visibility calcu-
lations such as occlusion culling in 3D space. Furthermore, terrain
height field information can be extracted from the resultant struc-
ture, hence providing a way to implement urban navigation systems
including terrains.

Keywords: Urban visualization, occlusion culling, celluliza-
tion, 3D navigation,
view-cells.

1. INTRODUCTION

Urban visualization strongly requires culling of unnecessary data in
order to navigate through the scene at interactive frame rates. There
are efficient algorithms for view-frustum culling and back-face
culling. However, occlusion culling algorithms are still very costly.
Especially, object-space occlusion culling algorithms strongly need
precomputation of the visibility for each view-point and for each
viewing direction.

Since the amount of data to be stored increases drastically, cel-
lulization of navigation space, thereby providing way to decrease
the amount of the necessary information caused by preprocessed
occlusion culling, is very crucial. For walkthroughs of architec-
tural models, cellulization is easy because rooms naturally com-
prehend to cells [1]. However, for walkthroughs of outdoor envi-
ronments like urban sceneries, cellulization is accomplished mostly
in model design time [2], by using semi-automated ways [3] or
by using building footprints where the models’ complexity is lim-
ited [4, 5, 6, 7].

Almost all occlusion culling algorithms calculate occlusion
with respect to ground walks, thereby eliminating the need for a 3D
navigation space. However, for a general fly-through application, a
cellulized navigation space can provide a suitable environment for
a precomputable visibility information. The algorithm presented
here calculates and extracts a navigation space for urban scenery
where the models of buildings are highly complex. The buildings
may have balconies, pillars, fences or holes where it is possible to
see through them. No assumptions or restrictions on the model are
made. The navigation space extracted looks like a jaggy sculpture

Figure 1: A 600K-triangle urban model used in the algorithms.

mold and it is used in the cellulization process required for the oc-
clusion culling algorithms. Besides, terrain height field information
can be extracted from the resultant structure, hence providing a way
to implement urban navigation systems with terrains.

Current occlusion culling algorithms, which use preprocessing
for occlusion determination, need large amount of data to store the
visibility lists for each viewpoint. One of the most promising re-
sult of our navigation space extraction method is that it becomes
suitable to develop other general structures which yields natural oc-
clusion determination for urban scenes and decrease the amount of
the data that is needed to be stored drastically. In the next section,
we give related work on the subject. In following sections, we de-
scribe our approach and the algorithm we developed as a solution
to this problem.

2. RELATED WORK

The method proposed in this paper automatically constructs the nav-
igation space for complex urban scenes like the one in Figure 1. If
3D navigation is not required, the resultant navigation space struc-
ture can also be used for the navigations that are bounded to the
ground.

Generally, navigation space extraction for building interiors is
not necessary, because rooms of the architectural model naturally
correspond to cells, where it is not important to cellulize the rooms
again as in [1, 8, 9]. In [1], the cell-to-cell visibility is defined,
where a portal sequence is constructed from a cell to the others if a
sightline exists, thereby making a whole cell navigable. In [4], the
user is assumed to be navigating on the ground. Besides, the city
they use was built using footprints, where the ground information
becomes explicit.

Sometimes it is quite sufficient to determine the navigable area
during model design time. In [2], the developed walkthrough sys-
tem accepts streets or paths as navigable, where a triangle is defined
as either a street or a path triangle. This means that in order to nav-
igate over a triangle, it must be a part of a street or a path. Besides,
only triangles are accepted for view-cells. Both of these properties
make extending user navigation into the 3D space very challeng-
ing, although the algorithm for occlusion culling that the authors
develop is suitable for this extension.

In [3], the user is assumed to be at two meters above streets.
Besides, the created model has straight streets, making navigation
space determination straightforward. Likewise, in [5, 6, 4] the au-

thors also implement navigation assuming the user is on the ground,
where the navigable space information is explicit and in 2D.

We need to mention that our aim is not to provide an envi-
ronment where collision tests are optimized, although the resultant
structure provides this. Specifically, we aim to create a suitable
data structure where cellulization for occlusion culling preprocess
becomes a simple task for complex urban scenes.

As a summary, except [10], where 3D navigation is performed
using parallel computing, almost all other algorithms perform 2D
navigation where extraction of navigation space is straightforward
and model complexity is limited into some extend. Hence, a simple
and yet powerful navigation space determination in 3D becomes
vital for 3D navigation applications.

3. NAVIGATION SPACE EXTRACTION ALGORITHM
3.1 Extraction Process

We need to mention that the input data formats do not have sig-
nificant importance on the efficiency of the algorithm, because our
approach is nearly independent of the input data format. The only
assumption is that the scene must be composed of triangles. One
of the most common data format is dxf* data format created by Au-
todesk, Inc. The data structure used to store this file is a forest type
data structure equipped with suitable fields designating the parame-
ters of the other algorithms.

The navigation space extraction algorithm mainly consists of
two phases: 1) the seed test, and 2) the contraction and the octree
construction part. In the first phase, the bounding boxes of objects
are calculated and a seed box is travelled around each object to find
the blocks that touch the surface of it. Filled seeds are later passed
to a contraction algorithm in which the octree structure for the nav-
igable area is constructed and the mold of the object is extracted.
It should be noted that it is possible to find all holes and passages
inside the objects within a user specified threshold using this ap-
proach. The flow diagram of our algorithm is shown in Figure 2.

After reading the scene database from the input file, the algo-
rithm first calculates the bounding boxes of each object in the scene.
Object discrimination is done while constructing the scene file and
each object (i.e., building) is defined with a header and triangles are
inserted into the list according to the object names, which is a prop-
erty of the dx £ file format. The bounding boxes are calculated in a
straightforward manner and stored in the relevant structures. Seed
testing and contraction parts of the algorithm take place in these
bounding boxes and all space out of these boxes are accepted to be
navigable.

3.2 Seed Testing

The seed testing phase is based on a box with a size of a user-
defined threshold. We call this size as threshold because it defines
the roughness of the extracted mold of the object. The time needed
to extract the navigable area strictly depends on the size of the seed
box.

We start by reading the scene data. The next thing is to cal-
culate the bounding boxes of each object in the scene. The object
discretization algorithm is based on grid cells with a user-defined
size threshold. This threshold defines the roughness of the extracted
mold of the object. The algorithm travels inside the bounding box of
the object to find the occupied grid cells. A grid cell and a triangle
may intersect in three ways, which are shown in Figure 3.

The first case is where any vertex (or vertices) of the triangle
is inside the cell. This case is the easiest to determine, in which a
range test gives the intended result (Figure 3 (a)). The second case,
none of the vertices of the triangle is inside the cell but the triangle
plane intersects the edges of the cell, is handled by performing ray
plane intersection test (Figure 3 (b)). In the algorithm to detect this
case, the main idea is to shoot rays from each corner of the cell to
each coordinate axis direction. The last case (Figure 3 (c)), where
the triangle penetrates the cell without touching any of its edges is
handled in a similar way, but this time the rays are shot from the
vertices of the triangle and checks are made against the surfaces of

READ INPUT SCENE

¥

. .
CALCULATE E EoE
BOUNDING BOXES B PARENT
OF SCENE OBJECTS [3)
oz
o
aAH
ﬁ I3
O
% &
9 TEST oH
E TRIANGLES E 2
& AGAINST SEED 0o
%)) BOX g O
5] ~
- :
a [SE g
] (9]
=)
wu

= b=

A
NAVIGATION-SPACE
OCTREE

Figure 3: Test cases: (a) any vertex is inside the cell; (b) the ver-
tices of the triangle is not inside the cell, but the cell edges intersect
with the triangle surface (See Algorithm 1); (c) the triangle edges
intersect with the surfaces of the cell. The idea behind this testing is
to determine each unit cube, which has an interaction with at least
one triangle. We believe, this will help us to create more realis-
tic data structures, which are specifically designed for urban scene
occlusion culling.

Figure 2: Flow diagram of the Navigation Space Extraction algo-
Il ||||||||' |||||||||||||||||

rithm.
|
g \||WE\|||\|||\|||\|H

(@) (b) (c)

I

2

the cell. This process is repeated until all locations in the bounding
box of the object is tested. A sample discretization for an object in
2D is shown in Figure 4 (a). With this approach, it is possible to use
all holes and passages through the objects as part of the navigable
area (see Figure 4 (b)).

The discretization of the object structure by testing each unit
cube with the triangle structure (See Figure 3) is essential with two
respects: one is the definition of the object hierarchy, and the other
is creating an object structure which may be an alternative to current
octree-like structure, which is a future work that is mentioned in the
conclusion part.

3.3 Extraction of Navigable Space

Although the uniform subdivision provides the occupied cell in-
formation, which is enough to determine the navigable space, its
memory requirement is high. In order to overcome this problem, an
adaptive subdivision is applied to the bounding box of the object to
extract the navigable area as an octree structure. This is done using
the occupied cell information provided by the uniform subdivision.
An example of the created structure is shown in Figures 5 and 6.

The navigation octrees for each object are tied up to the spatial
forest of octrees that corresponds to the whole scene. The empty
area outside the objects in the scene is also a part of the navigable
space.

(@ (b)

Figure 4: (a) Discretization of an object in 2D for easy interpreta-
tion. It is normally performed in 3D. The object is represented with
uniform grid cells (filled boxes show the complement of the object
space, which corresponds to the navigable area represented as an
octree using adaptive subdivision to reduce memory requirements.)
(b) Any holes and passages can safely be represented as part of the
navigable area.

We did not make any assumptions on the type of scene objects,
or on their respective locations, while determining the navigable
space information. The objects may have any type of architectural
property, such as pillars, holes, balconies etc. Our algorithm in-
discriminately finds the locations not occupied by any object part.
This property makes our approach very suitable for the models that
are created from different sources such as LIDAR, because the only
information needed is triangle information, which most model for-
mats have, or otherwise the primitives that are convertible to them.

(@ (®) (©

Figure 5: Navigation octree construction: (a) the original object;
(b) cells of the object, where the triangles of it pass through; (c) the
created navigation octree, in which navigable space information is
embedded. In the figure, the black lines show the occupied cells and
the green lines show the boundaries of the navigation octree for the
object.

3.4 Contraction and Octree Construction

After the seed test phase is finished, we have a discretized version
of the scene objects, where we exactly know the spatial locations
occupied by the triangles of the object within a certain threshold.
Although the occupied seed cell information is enough for us to de-
termine the navigable space, its memory requirement is very high.
Therefore, we need to contract this area and determine the naviga-
ble space using another structure requiring less memory space. An
octree structure is used for this purpose.

The octree structure constructed is shown in Figure 2. The algo-
rithm for the octree construction simultaneously contracts the space

for each triangle of the object do
define plane of triangle;
for each corner of the cell do
shoot rays towards the other neighboring corner;
if the ray hits the plane of triangle then
calculate the intersection point;
translate the point to the origin;
for each edge of the cell do
if the horizontal line to the right of the
intersection point intersects the triangle odd
number of times then
report as INSIDE;
else
report as OUTSIDE;

for each neighboring corners of the cell do
if any two neighboring corners have intersection on
the triangle then
return INTERSECT,

return NOTINTERSECT,

Algorithm 1: The pseudo code for the detection of the sec-
ond case, where a triangle passes through a cell but none of
the vertices of the triangle is inside the cell and the triangle
plane intersects with the cell edges.

occupied by the seed cells into larger blocks of space as much as
possible, thereby eliminating the need to keep filled cell informa-
tion for every small seed. This is done as follows.

The constructed octree allows the navigable space to be tra-
versed hierarchically. The algorithm first sets the bounding box of
the object as the parent of the octree and checks if there is any filled
cell within the range of the node. If there is any filled cell, then it
recursively subdivides itself into eight octants and repeats the same
procedure for the newly created nodes until the size of the node de-
creases below the size of the seed box or there is nothing left but
empty cells. This structure is tied to the spatial forest of octrees
after all the scene objects are processed. It should be noted that the
numbering scheme as seen in the Figure 2, provides neighboring
information of the octree nodes.

3.5 Resultant Structure

The algorithm is concluded after all the scene objects are processed.
The resultant octree structure represents the navigable area, where
bounding boxes are tied up to spatial forest of octrees. An example
of the created structure is shown in Figure 5. After this, the user ex-
actly knows the locations in 3D where navigation is possible. The
user will also know where the objects are and a hierarchical subdi-
vision of them will also be provided as will be explained in the next
section.

It should be noted that we did not make any assumptions on the
type of scene objects or on their respective locations, while deter-
mining the navigable space information. The objects may contain
any type of architectural features, such as pillars, holes, balconies,
etc. Our algorithm indiscriminately finds the locations where there
is not any object part (i.e., triangle). This property makes our ap-
proach very suitable for the models that are created from different
sources, because the only information needed is triangles, where
most model formats certainly provide. Other graphics primitives
such as lines or polygons having more than three vertices are not
handled, but they can easily be converted to triangles.

4. CREATING OBJECT STRUCTURE

In addition to creating the navigable space information of the scene
database, it is very easy to create the octree for the scene itself,
where further calculations on them can be performed. One impor-
tant process that can be applied to the hierarchy is occlusion deter-

i
TR
LTI ATR

Figure 6: The octree forest of a scene created by the navigation
space extraction algorithm having 24 buildings.

mination, where hierarchical calculations are strongly needed.

After the contraction process is performed and the octree for
navigation space constructed, the octree construction algorithm is
repeated once more seeking full seed cells to discretize the object.
This time the contraction part of the algorithm finds the cells which
contain geometry in it, whereas we did it for empty cells while con-
structing the octree for the navigation-space. The same procedure
is applied to each object and scene objects are tied to the spatial for-
est of object octrees. We are left with the two forests of octrees, one
with the navigable space information and one with the object hierar-
chy, which are useful for 3D navigation and scene object processing,
respectively.

5. CONCLUSION

During the development of navigation systems for urban sceneries,
the navigation determination becomes one of the most vital parts
of the work. The navigation space determination is simple for the
scene databases where the building footprints are used and the nav-
igation is bounded to the ground. However, for the systems that
need 3D navigation and the scene database is composed of com-
plex objects where footprints do not define the navigable area, the
navigation space determination becomes one of the most daunting
tasks.

At this point, our approach becomes a solution to the definition
of navigable space determination. It also constructs the hierarchical
scene database as an additional feature. One important feature of
our approach is that it is independent from the architecture of the
scene objects. The building models may have pillars or holes where
seeing through them is also possible. The method can be applied
to any type of unstructured scene files composed of objects such
as buildings. The application of the method produces two octrees;
one containing the definition of the navigation area and another one
containing the scene hierarchy, both in the form of the forest of
octrees.

Currently we are working on developing alternative data struc-
tures, which will help decrease the amount of the data necessary to
store the visibility. Our aim is to develop a data structure that stores
pointers for each building to store the visibility information, which
reduces the amount of data to be stored drastically. The discretized
version of the scene, being independent of the triangle structure will
help us in the development of this data structure. We are also work-
ing on developing an urban visualization framework that will use
the data structures and the ideas proposed in this paper.

Instead of describing the occlusion in terms of buildings, we
aim to subdivide the buildings into principal axis aligned slices and
store the visilibity information in terms of these slices, instead of

individual buildings. The motivation for this is that current occlu-
sion culling approaches accept a building as visible even if a very
small portion of the building is visible, causing unnecessary over-
loading of the graphics pipeline, especially if the buildings are very
complex, containing ten to hundred thousands of polygons.

REFERENCES

[1] Thomas A. Funkhouser, Carlo H. Sequin, and Seth J. Teller,
“Management of large amounts of data in interactive building
walkthroughs,” in ACM Computer Graphics (1992 Symposium
on Interactive 3D Graphics), 1992, vol. 25(2), pp. 11-20.

[2] Gernot Schaufler, Julie Dorsey, Xavier Decoret, and
Frangois X. Sillion, “Conservative volumetric visibility with
occluder fusion,” in ACM Computer Graphics (SIGGRAPH
"00 Proceedings), 2000, pp. 229-238.

[3] Laura Downs, Tomas Moller, and Carlo H. Séquin, “Oc-
clusion horizons for driving through urban scenes,” in ACM
Computer Graphics (SIGGRAPH "01 Proceedings), 2001, pp.
121-124.

[4] Peter Wonka, Michael Wimmer, and Dieter Schmalstieg, “Vis-
ibility preprocessing with occluder fusion for urban walk-
throughs,” in Proceedings of Rendering Techniques, 2000, pp.
71-82.

[5] Michael Wimmer, Markus Giegl, and Dieter Schmalstieg,
“Fast walkthroughs with image caches and ray casting,” Com-
puters & Graphics, vol. 23, no. 6, pp. 831-838, 1999.

[6] Frédo Durand, George Drettakis, Joélle Thollot, and Claude
Puech, “Conservative visibility preprocessing using extended
projections,” in ACM Computer Graphics (SIGGRAPH 00
Proceedings), 2000, pp. 239-248.

[7] Dieter Schmalstieg and Robert F. Tobler, “Exploiting coher-
ence in 2.5-D visibility computation,” Computers & Graphics,
vol. 21, no. 1, pp. 121-123, 1997.

[8] C. Saona-Vazquez, I. Navazo, and P. Brunet, “The visibil-
ity octree: a data structure for 3D navigation,” Computers &
Graphics, vol. 23, no. 5, pp. 635-643, 1999.

[9] Carlos Andujar, Carlos Saona-Vazquez, Isabel Navazo, and
Pere Brunet, “Integrating occlusion culling and levels of detail
through hardly-visible sets,” Computer Graphics Forum, vol.
19, no. 3, pp. 499-506, 2000.

[10] Douglass Davis, William Ribarsky, T. Y. Jiang, Nickolas
Faust, and Sean Ho, “Real-time visualization of scalably large

collections of heterogeneous objects,” in Proceedings of IEEE
Visualization, 1999, pp. 437—440.

	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis (I) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking (I) ...
	MonPmOR5-Geophysical Signal Processing (I) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis (II) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing (II) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking (II ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV (I) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (...
	ThuAmOR12-3DTV (II) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications (I)
	ThuPmOR4-Architecture and VLSI Hardware (I)
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics (I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware (II)
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Ugur Gudukbay
	Türker Yilmaz

