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ABSTRACT 
A large family of lossy 3-D mesh geometry compression schemes 
operate by predicting the position of each vertex from the coded 
neighboring vertices and encoding the prediction error vectors. In 
this work, we first employ entropy constrained extensions of the 
predictive vector quantization and asymptotically closed loop pre-
dictive vector quantization techniques that have been suggested in 
[3] for coding these prediction error vectors. Then we propose the 
representation of the prediction error vectors in a local coordinate 
system with an axis coinciding with the surface normal vector in 
order to cluster the prediction error vectors around a 2-D subspace. 
We adopt a least squares approach to estimate the surface normal 
vector from the non-coplanar, previously coded neighboring verti-
ces. Our simulation results demonstrate that the prediction error 
vectors can be more efficiently vector quantized by representation 
in local coordinate systems than in global coordinate systems. 

1. INTRODUCTION 

Polygonal meshes are the primary representation tools used for the 
visualization of 3-D objects in manufacturing, entertainment, 
defense industry, computer aided design and architecture 
applications that allow general and restricted access to these objects 
over communication networks. Recent multimedia standards such 
as VRML (Virtual Reality Markup Language) and MPEG-4 
(Motion Pictures Expert Group-4) have embodied polygonal mesh 
coding and representation methods. Typically, polygonal mesh 
coding is performed in three distinct parts: Connectivity encoding 
concisely represents the topological information about the degrees 
of faces and vertices of a mesh as well as the adjacency relations 
between the faces bounded by edges and vertices. Geometry coding 
concisely represents the coordinate values of the vertices. Property 
encoding describes features such as texture coordinates and 
material attributes. 
      The state of the art in lossless connectivity coding can 
compress most regular meshes down to the range of 1-3 bits/vertex. 
On the other hand, full precision representation of the vertex 
coordinates typically starts at 8 bits/coordinate quantization. Vertex 
coordinates represented by 10bits/coordinate quantization can be 
losslessly compressed by simple entropy coding to achieve 6-
7bits/coordinate rate. Since such rates are fairly significant with 
respect to the lossless connectivity coding rates, there is a need for 
lossy vertex coordinate compression. 
      Linear prediction methods are widely used in lossy vertex 
coordinate compression to exploit the correlation between the 
adjacent vertices. These methods require an order of traversal of 
the mesh vertices that is determined at the encoder and can be 
tracked by the decoder. For single resolution meshes, such orders 
are conveniently provided by the order of vertex processing during 
connectivity coding. Without loss of generality to employing other 
methods, the connectivity coding method of [9], is adopted in the 
current work for determining the order of predictive coding of the 
vertices. This method is briefly outlined in Section 2. 

      Simple linear prediction methods, such as the delta modulator 
of [4], as well as more advanced ones ([5,8,11]) that form the 
prediction as a linear combination of previously coded vertices, 
have been proposed. In [8] and [11], the prediction is the fourth 
corner of a parallelogram with the other three corners being the 
previously coded vertices from a neighboring face and/or from the 
same face as the predicted vertex. Geometry compression methods 
for multiresolution meshes ([6,7,12]) also employ some form of 
linear prediction. The parallelogram prediction method of [11], that 
we have adopted for our work, is described in Section 3. 
      Recently, the statistical dependencies among the prediction 
errors of the vertex coordinates have been efficiently exploited by 
vector quantizing the vector of coordinates of a vertex ([2,3]). The 
mapping of channel indices to codevectors (table look- up) for the 
reconstruction of prediction error vectors in vector quantization is 
also very suitable for hardware implementation . 
      The main contribution of this work is the utilization of a local 
coordinate system for the efficient vector quantization of each 
prediction error vector. Each prediction error vector is represented 
in its local coordinate system whose z-axis coincides with the 
surface normal vector at the location where the prediction is 
performed. Since three or more previously coded vertices of each 
coded polygonal face may be available to both the encoder and the 
decoder, a least squares estimation approach, as described in 
Section 3.1, is employed to determine the surface normal vector. 
The successive rotations described in Section 3.2, that transform 
the prediction error vector from the global coordinate system to its 
local coordinate system, do not change its norm, but reduce the 
variability in the surface normal component of the prediction error 
vector. Since the transformation clusters the prediction error 
vectors around a 2-D planar subspace, the components represented 
in a local coordinate system exhibit more statistical dependency 
than the components represented in the global coordinate system 
which can be efficiently exploited by block coding the components. 
      A similar transformation is mentioned in [2], but suffers from 
several drawbacks. Primarily, the nonorthogonal coordinate system 
of [2] counteracts the decorrelation goal of efficient compression 
schemes. Secondly, the prediction, taken to be the vertex at the far 
end of the triangle neighboring the one on which the predicted 
vertex lies, is of poor quality when compared to parallelogram 
prediction. Finally, the coordinate system of [2] is based on only 
the three previously coded vertices of the neighboring triangle. For 
polygonal meshes, where the original vertex to be predicted may 
lie on a face with more than three previously coded vertices, 
determining the surface normal vector using only three previously 
coded vertices does not always exploit all the available knowledge.  
      As a secondary contribution, we demonstrate the promise of the 
entropy coded and entropy constrained vector quantization (ECVQ, 
[1]) in 3-D mesh geometry compression. Previous vector 
quantization approaches to geometry compression ([2,3]) aimed to 
minimize distortion with no constraints on the coding rate. 
      In Section 4, we provide details of the asymptotical closed loop 
codebook design strategy of [13] developed for vector quantization 



of prediction error vectors that vitally enables the design of 
codebooks on error vectors of predictions based on the lossy coded 
neighboring vertices. While, in [3], this strategy was applied to 
predictive minimum distortion vector quantization of 3-D mesh 
vertices, ours is an extension to the entropy constrained case.  
      The simulation results in Section 5 demonstrate the 
performance advantage of vector quantizing prediction error 
vectors represented in the local coordinate systems over vector 
quantizing prediction error vectors represented in a global 
coordinate system as well as the performance advantage of ECVQ 
over minimum distortion VQ in block coding prediction error data. 

2. CONNECTIVITY CODING FOR POLYGONAL MESHES  

In the connectivity coder of [9], the region growing algorithm 
proceeds by inserting a new face to one of one or more connected 
processed regions. The region to which the new face is inserted is 
bounded on the inside or the outside by a list of vertices called the 
active boundary. The boundaries of those connected regions that 
are not currently grown reside in a stack. When the active boundary 
collapses onto itself due to the insertion of the new face in a 
processed region, the boundary is split into an inside and an outside 
boundary. One of these is pushed onto a stack and the other 
becomes the new active boundary. When the active boundary 
collapses onto one of the boundaries in the stack, that boundary is 
merged with the active boundary. If an active boundary collapses 
onto itself with no more faces to add, the boundary from the top of 
the stack is popped and becomes the new active boundary.  
      The edge or the set of edges on the active boundary that defines 
the border between the newly inserted face and the processed 
region to which it is added is called the focus. For the insertion of 
the next face, priority is given to faces bordering vertices that have 
zero free valences and are closest along the active boundary in the 
counterclockwise direction to the previously inserted face. If there 
is no vertex with zero free valence on the active boundary, then 
vertices with one free valence are searched for in a similar way. If 
this search also fails, the edge that has been inserted last to the 
active boundary becomes the focus.  
      For each inserted face, the state of operation (normal, split, 
merge) is entropy coded and the face’s degree is entropy coded 
conditional on the average valence of its previously coded vertices . 
In a counterclockwise order, the valence of each newly coded vertex 
of an inserted face is also entropy coded conditional on the face’s 
degree. Since the alphabet size is small, arithmetic coding ([10]) has 
been preferred in our implementation. 

3. GEOMETRY COMPRESSION ON A LOCAL 
COORDINATE SYSTEM 

The parallelogram prediction of vertex x  is formed as  

3210
~~~~̂ vvvv −+=    (1) 

where }3,2,1{  ,~ ∈ivi  represents the vector of reconstructed coor-

dinates of the i’th vertex used in the prediction of 0v . The notation 

0
~̂v  emphasizes the dependence of the prediction on the recon-
structed rather than the original vertices. The vertices are predicted 
in the counterclockwise order of traversal of the vertices in a new 
face during connectivity coding. If 1

~v  and 2
~v  are the only previ-

ously reconstructed vertices of the newly coded face on the bound-
ary of the processed region, then 3

~v  is the first (reconstructed) ver-

tex in the clockwise direction neighboring 1
~v  and 2

~v  in the last 
coded face, and the operation is termed across prediction ([11]). 

 
Figure 1. Left: Across Prediction - The clockwise neighbor of 
the left coded vertex of the focus edge in the new face is pre-
dicted as the fourth corner of a parallelogram whose three cor-
ners (dark circles) are the two previously coded vertices of the 
new face on the focus edge and the clockwise neighbor of the 
focus edge in the previously coded face. Right: Within Predic-
tion - Clockwise neighbor of the previously coded vertices of the 
new face is predicted as the fourth corner of a parallelogram 
whose three corners are the previously coded vertices (dark 
circles) of the new face. The predictions are shown as stars. 

Otherwise, 3
~v  is between 1

~v  and 2
~v on the new face, and the op-

eration is termed within prediction ([11]). Since each newly coded 
face has at least two previously coded vertices, the first vertex to be 
coded is either within predicted or across predicted while the others  
are within predicted. Figure 1 depicts each type of prediction.  
     For the parallelogram rule to work efficiently, the number of 
vertices on a face should be four. Another implicit assumption is 
that the vertices used for prediction and the predicted vertex are 
coplanar. In general, this assumption does not hold true for the 
following reasons: 
i) The original vertices of polygonal faces designed by some mesh 
generation applications may be non-coplanar, although major 
deviations from coplanarity are infrequent. Applications usually 
partition highly non-coplanar faces into smaller coplanar ones. 
ii) Even when the original faces are coplanar, the three reconstructed 
vertices used in prediction will, in general, not be coplanar due to 
the presence of quantization noise in iv~ , i.e., 

}3,2,1{   ,~ ∈+= iqvv iii . The quantization noise iq  has a 
component normal to the plane of the original face. 
iii) Lastly, across prediction employs the vertices of one face to 
predict a vertex of a neighboring face. Even when the original faces 
are coplanar and the quantization noise is negligible, there could be 
a substantial surface normal component of the prediction error 
vector due to the crease angle between the two faces. 
      Linearly combining all three components of }3,2,1{  ,~ ∈ivi  by 
direct application of Eqn. (1) does not make use of the fact that most 
mesh generation applications tend to generate coplanar faces. To see 
this, let us assume that the three original vertices used in prediction 
are coplanar and employ two 2-D rotations that transform their 
plane to the x-y plane of a new coordinate system. Since rotations 
preserve distances, neither the norm of the prediction error vector 
nor the quantization error statistics changes. However, it is easier to 
impose the coplanarity constraint in the new coordinate system. The 
overall operation of performing these rotations for each face is 
termed the local coordinate transformation. 
      In the local coordinate system, ziq , , the surface normal 

component of the quantization error iq , has zero mean. Consider 
the situation where the sample quantization error values are such 
that 0,1 >zq , 0,2 >zq , and 0,3 <zq . In this case, the direct 
application of Eqn. (1) results in a cumulative error  of 

3210 qqqq −+=  with respect to 3210ˆ vvvv −+=  so that 



000 ˆ~̂ qvv += . The surface normal component of 0q  is 

03210 >−+= zzzz qqqq . However, the best estimate for the 

surface normal component should be [ ] [ ] 00 == izz qEqE  if we 
assume, or our best guess is that the predicted vertex is coplanar 
with the vertices used in prediction. This implies that rather than 
directly applying the paralelogram rule in the 3-D space for 
determining the z component in the local coordinate system, the z 
component of the predicted vertex should always be set to zero and 
only the x-y components should be determined with the application 
of the parallelogram rule in a 2-D planar subspace. 
      When the vertices used in prediction as well as the predicted 
vertex are coplanar, the z-component of prediction error vector will 
be always zero so that this component does not need to be coded. In 
general, due to the three reasons stated above, this component has a 
nonzero variance that is lower than the variances of the x and y 
components. Since there exists virtually no memory between the 
prediction error vector components, a prudent lossy coding strategy 
for the prediction error vector would be to scalar quantize its 
components by allocating fewer bits to the z component than the x 
and y components. Vector quantization of the prediction error vector 
is an alternative strategy that exploits the lower variance 
characteristic of the z-component of the prediction error vector. 

3.1 Least squares estimation of surface normal vector 

Due to the noncoplanarity of the reconstructed vertices of a face, 
only the plane that best fits these vertices can be estimated. 
     Let the equation for the estimated plane of the face be  

bymxmz ++= 21  
and let the coordinates of the N vertices of this face that have been 
previously reconstructed at the decoder be 

Nkzyx kkk ,...,1 ),,( = . The least squares estimation for the 

vector of parameters, Tbmmp )  ( 21= can be obtained as 

hAAAp TT 1)( −=  where T
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In order to satisfy the conditions 3≥N  and 3)( =Arank needed 
to avoid an underdetermined system of equations, the 3≥N  
vertices should not be on a plane perpendicular to the x-y plane in 
the global coordinate system. If 3≥N , but 3)( <Arank , then a 
similar approach may be followed after writing the equation of the 
plane by expressing the y coordinate in terms of the x and z coordi-
nates, or the x coordinate in terms of y and z coordinates depending 
on which form leads to 3)( =Arank . 

3.2 Local coordinate transformation by rotations 

Once the  surface normal vector is estimated, then a first rotation 
with θ  degrees that maps the surface normal vector to a vector in 
the x-z plane and a second rotation with φ  degrees that further 
maps this vector to a vector on the z axis of the global coordinate 
system are determined. These rotations are illustrated in Figure 2 on 
a sample vector 1s . By applying these rotations in this order, all 
vertices that are used in prediction as well as the predicted vertex are 
placed in the local coordinate system. As discussed above, the z 
component of the prediction in the local coordinate system may be 
set to zero, while the other two components are determined from 

three reconstructed vertices by applying the parallelogram rule. 
Finally, the prediction error vector is found by subtracting the 
prediction from the predicted vertex in the local coordinate system. 

 
Figure 2. Transformation from the global to the local coordinate 
system: Rotations that are applied to the prediction vectors (or 
the vertices used to form them) are depicted above on a sample 
vector 1s  where the first rotation rotates 1s by θ  degrees and 

maps to 2s on the xz plane and the second rotation rotates 

2s by φ  degrees and maps 2s  to 3s on the z axis. 

 
Figure 3. The parallelogram rule is applied on a plane whose 
surface normal vector is determined by least squares estimation. 
The three corner points that are used to form the prediction are 
denoted by X marks. These points are the projections of the 
reconstructed vertices iv~  onto the plane. The prediction error 
vector is shown by the dashed-dotted arrow. 

     The overall prediction operation is depicted in Figure 3. Setting 
the z-component of the prediction vector to zero is equivalent to 
projecting the three reconstructed vertices used in prediction onto 
the plane whose surface normal vector is determined by least 
squares estimation and forming the prediction vector by applying 
the parallelogram rule to these projections. Let ziq ,  be the realiza-

tions of random variable zQ . Minimization of [ ]22
, z

i
zi QEq ≈∑  

enables [ ] [ ]22
,0,0 3)~̂ˆ( zzz QEvvE =−  to be minimized assuming 

surface normal components of quantization errors of vertices are 
i.i.d. as zQ . When 0v is coplanar with iv , zz vv ,0,0ˆ = . This im-

plies the minimization of [ ]2
,0,0 )~̂( zz vvE − . 

4. ASYMPTOTIC CLOSED LOOP ECVQ DESIGN  

In predictive vector quantization, in order to ensure that the test 
source data resembles the training data as much as possible, 
codebook design must be performed in an iterative way termed the 
asymptotic closed loop (ACL). 
     In order for the decoder to track the prediction step, the encoder 
employs the vertices }3,2,1:~{ =ivi that have been lossy 
compressed and reconstructed by vector quantization during 
prediction. On the other hand, in open loop (OL) codebook design, 
the prediction vector is formed as a linear combination of the 
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original vertices }3,2,1:{ =ivi . Consequently, there is 

quantization noise }3,2,1:{ =iqi  in the coordinates of the 
vertices employed in prediction during actual encoding, but there is 
no quantization noise in the coordinates of the vertices employed in 
prediction during open loop codebook design. Therefore, the 
average prediction error vector norm is less for open loop 
codebook design than for actual encoding. In order to remove this 
mismatch between test and training data, lossy compressed and 
reconstructed vertices should be used in prediction during 
codebook design. Since it is not possible to make use of the cur-
rently reconstructed vertices for prediction, one can at best make 
use of the most recently reconstructed ones. This suggests an 
iterative design technique. 

Asymptotic closed loop (ACL) codebook design algorithm: 
1.Initialization: Design an open loop predictive vector quantizer 
codebook to generate a set of prediction error vectors.  
2. Generic step (N=1; N<=N_MAX;N=N+1):  
a. Design Codebook N by the ECVQ algorithm based on the 

current sequence of prediction error vectors. 
b. For all vertices (I=1;I<=I_MAX;I=I+1): Quantize prediction 

error vector I by Codebook N and add the result to prediction 
for vertex I to get reconstruction for vertex I.  

c. For all vertices (I=1;I<=I_MAX;I=I+1): Predict vertex I 
using reconstructed vertices with indices from the causal set 
{1,...,I-1} and subtract the prediction from the original vertex 
I to get the prediction error vector I. 

     As suggested in [13], the predictions are based on the 
reconstructed vertices from the previous iteration so that the 
codebook can be applied to the quantization of the prediction error 
vectors used in its design. Assuming that this more optimal 
quantization of the prediction error vectors yields better prediction 
performance, the convergence of the iterations is guaranteed.  
     In the first generic step, an open loop codebook is initially 
designed by running the LBG algorithm (rate constraint parameter 
set to zero). At each following generic step, the ECVQ iterations of 
[1] are performed until convergence with a nonzero rate constraint 
parameter where the initial codebook is the final codebook of the 
previous step. The generic steps are repeated N_MAX times or 
until there is no change between the final codebooks of two 
successive generic steps. At each generic step 2.b, the first vertex 
to be coded. is not predicted, but its coordinates are absolutely 
coded with a large number of bits.   

5. SIMULATION RESULTS 

In the simulations, prediction error data was collected from six 
models to train the vector quantizer codebooks. Prior to training 
and encoding, each model was normalized by its vertex coordinate 
standard deviation. 
     As stated in Section 3, Table 1 shows that the z component of 
the prediction error vector represented in the local coordinate system 
(shaded column) has a substantially smaller variance than its x or y 
components or the components of the prediction error vector 
represented in the global coordinate system. 
     Distortion vs. Rate curves displayed in Figure 4 for the coding 
of the test model, Teapot, are representative of the results obtained 
for the other three test models. Coding with an open loop trained 
ECVQ codebook yields a significantly better distortion-rate 
performance on a local coordinate system than on a global 
coordinate system. The codebooks designed by N_MAX=5 
iterations of the ACL algorithm yield slightly better overall 
performance than those obtained by open loop design. 
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Figure 4. Distortion (mean squared error) vs. rate (bits per ver-
tex) curves for the geometry compression of Teapot. 

Local Global  x y z x y z 
Al 3.10E-3 2.78E-3 8.24E-4 1.89E-3 1.59E-3 2.04E-3
Galleon 1.74E-4 1.83E-4 3.2E-5 9.1E-5 1.2E-4 1.06E-4
Teapot 4.85E-3 9.53E-3 4.31E-4 4.87E-3 3.47E-3 4.16E-3
Triceratops 2.27E-4 3.06E-4 9.4E-5 1.64E-4 1.51E-4 1.77E-4

Table 1. Variances of prediction error vector components rep-
resented in global and local coordinate systems (ACL LBG cod-
ing with 512 codevectors). 
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