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ABSTRACT 

In this paper, we present a new objective quality measure for 
color images.  In any frequency domain transform, the 
coefficients in different frequency bands have different 
magnitudes.  The 2-dimensional Discrete Wavelet Transform 
(DWT) separates a given image into four bands:  LL, HL, 
LH, and HH.  After applying the DWT to both the original 
and degraded images, we compute the absolute value of the 
difference of the magnitudes in each band, and obtain the 
standard deviation (SD) of these differences.  The proposed 
measure is defined as the mean of four SD values. 
Correlation of the subjective ratings and objective scores 
gives the performance of the measure.  A comparison with 
the peak signal-to-noise ratio (PSNR), and two state-of-the-
art metrics, Q and MSSIM, shows that our results correlate 
better with the judgment of human observers. 

1. INTRODUCTION 
 
An important criterion used in the classification of image 
quality measures is the type of information needed to evaluate 
the distortion in degraded images.  Measures that require both 
the original image and the distorted image are called “full-
reference” or “non-blind” methods, measures that do not 
require the original image are called “no-reference” or 
“blind” methods, and measures that require both the distorted 
image and partial information about the original image are 
called “reduced-reference” methods. 
 
Although no-reference measures are needed in some 
applications in which the original image is not available, they 
can be used to predict only a small number of distortion 
types.  In the current literature, a few papers attempt to 
predict JPEG compression artifacts [1,2,3,4], and others 
blurring and JPEG 2000 artifacts [5,6]. Reduced-reference 
measures are between full-reference and no-reference 
measures; [7] evaluates the quality of JPEG and JPEG2000 
coded images whereas [8] provides assessment for JPEG and 
JPEG200 compressed images, images distorted by white 
Gaussian noise, Gaussian blur, and the transmission errors in 
JPEG2000 bit streams.  The applicability of full-reference 

measures is much wider.  They can be used to estimate a 
spectrum of distortions that range from blurriness and 
blockiness to several types of noise.  Recent examples of 
such measures are given in Table 1. 

Table 1.  Full-reference image quality measures 

Publication Domain 
type 

Type of distortion 
predicted 

Wang and 
Bovik [9] 

Pixel Impulsive salt-pepper noise, 
additive Gaussian noise, 
multiplicative speckle noise, 
mean shift, contrast stretching, 
blurring, and JPEG compression 

Wang, Bovik, 
Sheikh and 
Simoncelli [10] 

Pixel JPEG compression, JPEG 2000 
compression 

Van der 
Weken, 
Nachtegael and 
Kerre [11] 

Pixel Salt and pepper noise, 
enlightening, and darkening 

Beghdadi and  
Pesquet-
Popescu [12] 

Discrete 
Wavelet 
Transform 
(DWT) 

Gaussian noise, grid pattern, 
JPEG compression 

 
Two of the state-of-the-art image quality metrics are the 
universal image quality index (Q) [9] and the Structural 
Similarity Index (SSIM) [10].  The universal image quality 
index, Q, is defined as 
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The dynamic range of Q is [-1,1], with the best value 
achieved when yi = xi, i = 1,2,…,n.  The index is computed 
for each window, leading to a quality map of the image.  The 
overall quality index is the average of all the Q values in the 
quality map: 
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Q produces unstable results when either )( 22
yx µµ + or  

)( 22
yx σσ +  is very close to zero.  In order to circumvent this 

problem, the measure has been generalized to the Structural 
Similarity Index (SSIM): 
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Q is a special case of SSIM that can be derived by setting C1 
and C2 to zero.  As in the case of Q, the overall image quality 
MSSIM is obtained by computing the average of SSIM 
values over all windows: 
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In this paper, we propose a new image quality measure in the 
DWT domain using the magnitudes of DWT coefficients.   
 

2. NEW IMAGE QUALITY MEASURE:  M-DWT 

For a given frequency domain transform (e.g., DCT, DWT, 
and DFT), the coefficients in different frequency bands have 
different magnitudes.  The process of separating the 
frequency bands using the DWT is well-defined.  In two-
dimensional DWT, each level of decomposition produces 
four bands of data denoted by LL, HL, LH, and HH.   
 
The YUV color model is a linear transformation between the 
gamma-corrected RGB components that produces a 
luminance signal and a pair of chrominance signals.  A 
common approach employed in developing a quality measure 
for color images is to use only the luminance signal.   
 
 
 
 

Our proposed algorithm, M-DWT, is as follows: 

1. Apply DWT to the luminance layer of the original image. 
2. Apply DWT to the luminance layer of the degraded 

image. 
3. For each frequency band, perform the following 

operations: 
a. Obtain the magnitudes Moi, i=1,…,n of original DWT 

coefficients. 
b. Obtain the magnitudes Mdi, i=1,…,n of degraded DWT 

coefficients. 
c. Compute the absolute value of the differences:  

 |Moi-Mdi|, i=1,…,n. 
d. Compute the standard deviation of the differences. 

4. Obtain the mean of four standard deviations. 
 
The measure was applied to a full color, 24-bit version of 
512x512 Lena. Table 2 shows the tools and parameters for 
six degradation types, and five degradation levels.  Note that 
all of these degradations were performed in the pixel domain.   

Table 2.  Distortion types and distortion levels 

Type \ Level Level 1 Level 2 Level 3 Level 4 Level 5 

JPEG 
(XnView) 

20:1 40:1 60:1 80:1 100:1 

JPEG2000 
(XnView)  

20:1 40:1 60:1 80:1 100:1 

Gaussian blur 
(Photoshop) 

1 2 3 4 5 

Gaussian noise 
(Photoshop) 

3 6 9 12 15 

Sharpening 
(XnView) 

10 20 30 40 50 

DC-shifting 
(Programming

4 8 12 16 20 

High quality print-outs of 30 distorted full color images were 
subjectively evaluated by 14 observers.  The printer was a 
Hewlett-Packard printer with model number “hp color 
Laserjet 4600dn.”  The 8-2/16”x8-2/16” images were printed 
on 8.5”x11” white paper with the basis weight 20lb and 
brightness 84.  The observers were chosen among the 
graduate students and instructors from the Department of 
Computer and Information Science at Brooklyn College.  
About half of the observers were familiar with image 
processing, and the others only had computer science 
background.  They were asked to rate the images using a 50-
point scale in two ways:  Within a given distortion type (i.e, 
rating of the 5 distorted images), and across six distortion 
types (i.e., rating of the 6 distorted images for each distortion 
level).  As the proposed measure is not HVS-based, no 
viewing distance was imposed on the observers in the 
experiment.   Grade 1 was assigned to the best image, and 
grade 50 was assigned to the worst image. 
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The subjective ratings and objective scores are given in 
Tables 3 and 4, respectively.  MOS is the average of the 
ratings by human observers. 

Table3.  Mean opinion score (MOS) 

 JPEG 
JPEG 
2000 

Blur Noise Sharp DC-
shift 

Level 1 5.267 4 13.2 9.467 2.133 1.8 

Level 2 10.533 7.8 24.133 16.667 3.933 3.4 

Level 3 19.467 11.667 34.2 21.8 5.9333 5.067 

Level 4 28.467 15.333 42.4 27.6 8.867 6.867 

Level 5 35.2 20.067 49.933 32.867 11.667 8.733 

Table 4.  Objective scores 

 JPEG JPEG 
2000 

Blur Noise Sharp DC-
shift 

Level 1 6.297 5.183 9.898 8.192 1.046 0.231 

Level 2 8.291 6.996 14.795 14.026 1.608 0.373 

Level 3 9.659 8.075 19.914 17.991 2.205 0.741 

Level 4 11.043 9.088 23.327 22.453 2.942 1.250 

Level 5 12.582 9.877 24.811 22.457 3.865 1.862 

 
In the Video Quality Experts Group (VQEG) Phase I and 
Phase II testing and validation, a nonlinear mapping was used 
between the objective model outputs and subjective quality 
ratings [13].  The performance of each proponent model was 
evaluated after compensating for the nonlinearity.  To 
establish a nonlinear mapping, we followed the same 
procedure by fitting the logistic curve  
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We will compare the performance of M-DWT with PSNR, 
and two state-of-the-art metrics, Q and MSSIM. 
 
Figure 1 shows the scatter plots for the four measures using 
the luminance layer of Lena for thirty images.  Each marked 
point represents the corresponding values in Tables 3 and 4.   
 
 
 
 

 
 
   

 

 

 

 

 

 

                        

 

 

 

 

  

 

Figure 1.  Comparison of scatter plots for PSNR,  
        Q, SSIM, and M-DWT 



 

Table 5 displays the overall performance of each measure 
using the correlation between MOS and objective scores. 

Table 5.   Comparison of four measures  

Criterion\ 
Measure PSNR Q MSSIM M-DWT 

Correlation 0.455 0.886 0.873 0.9208 

 
The performance of a good objective measure can be 
determined by its ability to predict the quality not only within 
a given distortion type but also across different distortion 
types.  It will be shown that simple quality measures like 
PSNR perform well for all distortion types.  We therefore 
computed two additional sets of data to compare the 
performance of the measures:  (1)  Correlation within each of 
the 6 distortion types, and (2)  Correlation across each of the 
5 distortion levels. 
 
These correlations are given in Tables 6 and 7. 
 
Table 6.   Performance within each distortion type  

Distortion 
type\Measure PSNR Q MSSIM M-DWT 

Gaussian blur 1.000 0.999 0.999 0.996 

Gaussian noise 1.000 0.998 0.996 0.979 

JPEG 1.000 1.000 1.000 1.000 

JPEG2000 0.999 0.999 1.000 0.999 

Sharpening 1.000 0.999 0.998 1.000 

DC-shifting 1.000 0.999 0.999 1.000 

Table 7.   Performance across each distortion level  
Distortion 
level\Measure PSNR Q MSSIM M-DWT 

1 0.485 0.926 0.935 1.000 

2 0.439 0.943 0.954 0.998 

3 0.259 0.937 0.937 0.947 

4 0.163 0.934 0.936 0.938 

5 0.194 0.925 0.932 0.950 

3. CONCLUSIONS 

We presented a new color image quality measure based on 
the DWT. As it does not incorporate a Human Visual System 
(HVS) model, we do not use any assumptions regarding the 
viewing distance.   In the experiments, a wide range of 
distortion types was used.  For each distortion type, five 
levels of distortion were introduced.  Although PSNR is still 
widely used by researchers, our results indicate that it is an 
unreliable measure, especially for correlation across 
distortion levels.  The performance of M-DWT has a perfect 

match with the quality perceived by human observers. The 
proposed measure is also superior to state-of-the-art metrics 
Q and MSSIM.  In future work, we will use more color 
images, and extend the measure for evaluating the quality of 
watermarked images and video sequences.   
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