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ABSTRACT

This paper analyzes the effectiveness of combining certain
statistical techniques with a neural network to improve land
mine detection. The detection method must not only detect
the majority of landmines in the ground, it must also fil-
ter out as many of the false alarms as possible. This is the
true challenge to developing landmine detection algorithms.
Our approach combines a Back-Propagation Neural Network
(BPNN) with statistical techniques and compares the perfor-
mance of mine detection against the performance of simple
statistical techniques such as the energy detection method
and the stand-alone statistical techniques. Our results show
that the combination of these techniques with a neural net-
work improves performance over these alone.

Key-words: Geophysical signal processing, mine detection,
artificial neural networks.

1. INTRODUCTION

Antipersonnel landmines are devastating weapons of war, but
they are equally devastating after a war. The vast majority
of landmines in use today around the world have no means
of self-neutralization or self-destruction. Millions of anti-
personnel mines are estimated to be buried in the ground of
forty countries. They kill or maim more than 2000 civilians
per month and prevent the return to productive activities of
vast areas of land. Demining activities are supported by sev-
eral humanitarian organizations, at an estimated cost of $800
per mine found [4]. Therefore there is a real need for tech-
nologies which can render demining more effective, more
cost-effective and safer. Unexploded ordnance (UXO) cre-
ates very similar problems, both in areas where armed con-
flicts have taken place, and in military bases and training ar-
eas which need to be returned to civilian usage.

A number of novel technical approaches to the demining
problem have recently emerged based on various sensor tech-
nologies, and recent research has been directed at making ef-
fective use of these technologies to obtain greater accuracy in
mine detection and in organizing searches through the mine-
field [1, 5, 6, 7, 8, 9]. The whole field of mine detection
is now poised to achieve significant scientific developments.
All technical approaches which have been recently proposed
for accurately detecting mines and minimizing false alarms
are based on obtaining better sensors, and on exploiting sen-
sory data using on-line or off-line algorithmic processing of
data from single or multiple sensors. Data fusion techniques
that can take advantage of the complementary characteristics
of different sensors are also of interest. The recent availabil-
ity of multisensory data [2] from calibrated minefields, and

from minefields which actually represent a real challenge to
detection algorithms, are particularly useful.

The sensory data measured in the minefield is corrupted
by clutter due to a variety of man made artifacts, but it is
also affected in an unpredictable manner by inaccuracies in
registration (which refers to the exact positioning of the sen-
sory measurements with respect to the known location of the
target), by the naturally inhomogenous nature of the terrain,
and by a variety of natural occurring objects (such as rocks)
or local irregularities in the terrain. Thus, sensory data is
naturally or artificially very noisy, and this is both a source
for errors in mine detection and for a very large number of
false alarms. As a result, the sensory data contains errors
which cannot easily be characterized using a standard statis-
tical representation.

In [1] a new approach (the d -Technique) based on mea-
suring differences in reflected (or induced) energy in con-
tiguous areas, was shown to be an effective and computa-
tionally very fast approach to accurately detecting mines and
significantly reducing false alarms. In this paper, we consider
improvements on this approach using neural network tech-
niques and an additional measured statistic which we will
call the S-Statistic. The S-Statistic is combined with the d -
technique and a learning Back-Propagation Neural Network
(BPNN) [10] to obtain significantly improved mine detection
algorithms.

We propose a BPNN architecture, denoted BPNN(d ,S),
which is a feedforward neural network model. The network
is trained on two features extracted from the data in the mine
field: the d -value and the S-Statistic. This approach uses data
from a small calibrated area to train the network, which is
then used for mine detection over much larger areas. Our ex-
perimental evaluation using available sensory data [2] shows
that the trained network architecture can be effectively used
in areas which are geographically remote from the calibra-
tion area. It is also effective when tested with sensory data
obtained with EMI sensors which have different characteris-
tics from those which were used to collect the network train-
ing data.

1.1 The Geophysical Minefield Data

The minefield data we use in the present study is based on
measurements provided by DARPA [2], with two different
electromagnetic induction sensor systems, at a variety of ge-
ographic locations. This data has been collected in a series of
systematic minefield sensing experiments conducted at mul-
tiple locations implanted with decoy mines and mine-like ob-
jects, with a variety of sensors. The first sensing system con-
sidered is a Geonics EM61-3D [13] three-component time



domain sensor. It consists of a multichannel pulsed induc-
tion system having a 1 m square transmitter coil and three
orthogonal 0.5 m receiver coils which are positioned approx-
imately 0.3 m above the ground. The second system consists
of a 0.5 m Geonics EM61 pulsed induction sensor equipped
with two co-planar 0.5 m coils with a vertical spacing of 0.4
m. The sensor height above ground level is again approxi-
mately 0.3 m. Specifically, the data we will use represents
the measurements collected in a roughly 100× 100 square
meter area for four different regions. In order to be consistent
with the description provided in [2], we will use the follow-
ing names for these regions which have significantly differ-
ent clutter characteristics, as well as different target (decoy
mine) locations. They will be referred to as Firing Point (FP)
20, Seabee and Turkey Creek. An example of EMI energy
data is shown on Figure 1, for 1m Z Coil measurements ob-
tained by DARPA [2]. The area which appears to have zero
energy is simply one for which we do not have any data (e.g.
it may just not have been surveyed). Inspection of the figure
shows the significant amount of clutter.
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Figure 1: Geonics EM61-3D sensor Z coil 1m resolution data
at FP 20. The z-axis show the normalized energy value of the
coil, and x and y axes are x and y positions in the minefield.

2. THE ENERGY DETECTOR, THE d -TECHNIQUE
AND THE S-STATISTIC

An energy detector is a simple and useful detection technique
which will report an “alarm” – i.e. a location which may
possibly contain a mine – on the basis of some measured
response energy value which exceeds some given thresh-
old [2, 3]. Since it is the simplest possible detection tech-
nique, we will use it as a basis for comparison with other
methods. With a low enough threshold energy value, an en-
ergy detector will yield very high probabilities of detection
of mines but will also lead to unacceptably high false alarm
rates. Handling false alarms in the minefield can be almost as
expensive as removing a real mine. Since thousands of false
alarms can occur in sweeping a relatively small minefield, it
is important to be able to devise techniques which provide

a high probability of detection, with false alarm rates which
are much lower than those resulting from the energy detector.

One such improved detection technique is the d -
Technique reported in an earlier paper [1] which signifi-
cantly reduces false alarm rates by making use of neighbor-
hood or area information around each location. It uses the
following statistic of the Z − coil data from an electromag-
netic induction (EMI) sensor:

Dn(p) =
E(p)−E(pn)

E(p)
, (1)

where p is any point in the minefield, E(p) is the EMI energy
level measured by the Z−coil at point p, and E(pn) is the en-
ergy level measured at an immediate neighbor pn (there are 8
of them) of point p. The idea in using this statistic is to stress
that relative energy values are more significant indicators of
the presence of a target, than absolute levels or differences in
energy. We call Dn the Local Relative Energy. Notice that
Dn(p) ≤ 1, and that it can take unbounded negative values.

2.1 The S-Statistic

When we analyze the energy profiles at the mine locations,
we realize that the energy is higher than that at neighboring
points. If we assume that this is generally true for most mine
locations, and we further assume that in non-mine locations
this property does not hold true, then we would have a very
good indicator that will help us identify mine locations. Just
as the d -Technique exploits this property, we propose a new
and very effective statistic using this type of local difference
information, which we call the S-Statistic, where:

S =
E(p)− (8−m)/8åAll pn E(pn)

E(p)
(2)

where m = 7 or m = 8.

3. A NEURAL NETWORK MINE DETECTOR
USING THE d -TECHNIQUE AND THE S-STATISTIC

The neural network approach we propose compensates for
clutter by making use of neighborhood information. Thus the
advantages of using a neural network include the following:
real-time operation (depends on the neural network structure
- the one used in this paper supports it), adaptability to un-
structured and not previously known environments, robust-
ness to the presence of non-standard noise, fault tolerance
via adaptivity, parallel processing of sensor data and capabil-
ity for direct hardware implementation.

In this section we combine the S-Statistic with the d -
Technique in a neural network design. The approach we pro-
pose is based on learning. It exploits data from a small cali-
brated area to train a neural network which can then be used
for mine detection over much larger areas. We will show that
the trained network can be robustly used in areas which are
geographically remote from the calibration area, and that it
can even be used for mine detection with EMI sensors which
are different from those which produced the training data.

3.1 The BPNN(d ,S) Structure

We will now discuss the specific neural network architec-
ture which will be used for mine detection, and the learning



procedure which uses calibration area data based on the S-
Statistic and the d -Technique. The network is only trained
with Z-coil 1m data from the 30m× 15m calibration area of
a site known as Firing Point 20 (FP20) [2].

We use a three layer feedforward back-propagation neu-
ral network (BPNN) to detect mines and reject false alarms
(see Figure 2). The network has two input neurons. When
the network is either trained for some location p, or when
it is asked to provide a decision (mine or non-mine) for
the location p, one input neuron receives the input s =
E(p)−(8−m)/8åE(pn)

E(p)
and the other receives d = m/8 where d

is the d -Technique parameter and m is the number of imme-
diate neighbors required whose energy values are strictly less
than the center point’s energy value.

In the network’s output layer, there are two neurons
which are used to decide between the two hypotheses (mine
or a non-mine) for the location for which input data is pre-
sented. The network has six intermediate (hidden) layer neu-
rons.

NM

m/8s

Figure 2: BPNN Detector with inputs s and d = m/8
(BPNN(d , s)

In the training phase, one output designated as M is
trained to produce the value 1.0 for mine locations and the
value 0.0 at non-mine locations, while the other output des-
ignated N is trained for the opposite result. Since the output
neurons M and N will take values between 0 and 1 according
to the BPNN model, we use the ratio of M to N to make a
decision, as described below.

The calibration data consists of registration targets, other
targets for calibration, and the so-called system “stressing”
targets [2]. The first two target groups have been designed to
calibrate radar and EMI systems (we only deal with the latter
in this paper), and the stressing targets are used to determine
whether these sensors are achieving the desired sensitivity
and effectiveness.

The network is trained using the BPNN learning algo-
rithm [10]. The weights from the input neurons to the inter-
mediate layer, and from the intermediate (or hidden layer) to
the output neurons, are adjusted so as to minimize the cost
function:

E =
1
2
[(R−M)2 +((1−R)−N)2] (3)

where R is the ground truth information about the location
being searched. For training, R has a value of 1 if there is
a mine, and 0 if not and this training is carried out over all
locations p in the calibration area.

In the decision phase when the network is being applied
to data it has not observed previously, we use the decision
variable:

D =
M
N

(4)

When the input values s and d for a given location are pre-
sented to the network and if D > 1 the location is declared
to contain a mine; otherwise it is declared not to contain a
mine. Clearly, just as with any other detection algorithm, the
neural network is not “perfect” so that the probability of a
false alarm is not 0, and the probability of correct detection
of a mine is not 1. However, as we shall see below, its per-
formance is remarkably good with little training and across
different EMI sensors.

4. EXPERIMENTAL RESULTS

This section summarizes the performance achieved using the
Back-Propagation Neural Network for land-mine detection.

After training the BPNN network on the calibration data,
it was tested for all available data which includes measure-
ments from both 1m and 0.5m EMI sensor systems (6 sep-
arate sets), for all the data including calibration and “center
square” areas. The center square is a 100m× 100m area in
which registration targets are placed. Since the energy mea-
surements vary from one site to another and also for different
sensory systems, we prepare the results with zero threshold
energy level. We report the results of the energy detector and
the BPNN(d ,S) applied after d = 7/8 and d = 7/8.

The results for the three minefield sites with two different
sensors used, are given in Table 1. For all sites we observe
that the BPNN based techniques achieve substantial reduc-
tion in probability of false alarms over the d -Technique and
the energy detector, though it may not find as many actual
targets as the d -Technique.

Location Names FP 20 Seabee Turkey Creek

Data Sensor 1m 0.5m 1m 0.5m 1m 0.5m

Points searched 8406 7896 11134 10395 8109 7945

No. of Mines 21 24 24 24 24 24

FA detected: Energy det. 8385 7872 11110 10371 8085 7921

Mines detected: Energy det. 21 24 24 24 24 24

FA detected: d = 7/8 2067 1381 2628 1746 2014 1463

Mines detected: d = 7/8 21 23 24 24 24 24

FA detected: BPNN(d ,S) 978 588 1291 853 985 719

Mines detected: BPNN(d ,S) 20 23 24 23 24 24

Table 1: ANN Improvement for Reducing False Alarms for
Different Sites with 1m and 0.5m Z-coil Data

The Receiver Operating Characteristic (ROC) for FP20 is
plotted as shown in Figure 3. Each ROC curve represents the
relation between the probability of detection and the prob-
ability of false alarms for a certain detector. Three ROC
curves are plotted: (i) for the pure energy detector, (ii) for
the d -Technique, and (iii) for the BPNN(d ,S).

It can be seen that the BPNN detector provides better per-
formance than the d -Technique, and both have significantly
better performance than the pure energy detector. For exam-
ple, from Figure 3 to obtain a 0.08 false alarm probability, the
probability of detection will be 0.5 for the pure energy detec-
tor , 0.57 for the d -Technique, and 0.80 for the BPNN(d ,S).



Figure 3: ROC curve for FP20 using 0.5m Z coil data

We noticed similar improvements for the data from the other
sites.

Of course, the ANN based technique requires training,
and is therefore more complex and computationally more
costly than the d -Technique. Notice also that for a certain
value of the probability of detection, there may be multiple
values of the percentage of false alarm reduction. This is be-
cause it sometimes occurs that, as we vary the energy thresh-
old, the probability of detection remains unchanged while the
false alarm probability varies.

5. CONCLUSIONS

In this paper we have proposed a back-propagation neural
network based algorithm for mine detection and false alarm
filtering. It is shown through the use of experimental data that
the proposed network is very effective in detecting mines and
rejecting false alarms.

Although BPNN training needs to be conducted off-line
and is computationally costly, the actual exploitation of the
algorithm by feeding point-by-point data and obtaining the
network’s output is a real time computation. Both of these
aspects can be carried out on a low cost portable personal
computer. Furthermore, the learning phase can be signifi-
cantly accelerated by a hardware implementation.

All experimental results we present here, based on all
available data from EMI sensors provided in [2], both with
1m and 0.5m sensors from two different instruments, support
the following claims:
• A BPNN detector offers a robust non-parametric tech-

nique for mine detection. It out-performs the d −

Technique and the energy detector significantly.
• The BPNN mine detector can be trained on limited cali-

bration data, and the trained network then performs in a
robust manner in a wide variety of geographic locations
with measurement data which it has not ‘seen’ before,
and with data from sites with very different clutter con-
ditions.

• The BPNN detector’s robustness appears to transcend the
particular sensor (and resolution) used. Specifically, a
BPNN detector trained with limited 1m data at one site
performs accurately at all sites, even with 0.5m data ob-

tained with another sensor.
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