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ABSTRACT

   The paper presents an optimal and direct complete design
method for bandpass wave digital filters (WDFs) having
ladder structures and approximating different minimum
losses in the two stopbands. Moreover, the resulting loss
characteristic is restricted to be equiripple in the three
bands, i.e., it has the same features of elliptic response. The
approximation is carried out directly without applying
frequency transformation techniques. It relies on applying
interpolation  techniques combined with the Remez-
exchange algorithm . The resulting transmission function is
synthesized by successive partial extraction of the poles at
zero and infinite reference frequencies from the successive
resulting impedance functions followed by successive
extraction  of  the finite transmission zeros from the
remaining admittance functions. The wave digital
realization is finally obtained by applying three-port  series
and parallel adaptors.

1.   INTRODUCTION

   Bandpass digital filters are required in many
communication systems and applications. Previously [1-4],
these filters were obtained through applying design
methods based on frequency-transformation techniques.
However, the design methods based on frequency-
transformation techniques suffer from many disadvantages:
1- Computational complexity. 2- Degree non optimality,
which results from two sources. On one hand, the degree of
the filter must be even. On the other hand, there is no
possibility to design two stopbands with two different
minimum losses. 3- The number of  transmission  zeros
must be divided equally between the the two stopbands .

   Consequentlty, the direct design of  bandpass digital
filters is the optimal solution because it overcomes the
above disadvantages. Recently, effective approximation
methods [5-7] have been presented for bandpass WDFs
having lattice structures.

   Now, it is useful and interesting to apply the concept of
direct design for bandpass  WDFs having ladder structures.
In  Ref. [8], the direct design of bandpass WDFs having
simple  adder  structures  has  been  considered.  For    these

structures, the transmission function exhibits all of its zeros
at zero and infinite reference frequencies. Consequently, the
resulting amplitude characteristic has the features of
Chebyshev response, i.e., it ripples equally in the passband
and decreases monotonically in the two stopbands.

   In this contribution, the direct design  of  bandpass WDFs
having optimal ladder structures is considered. For these
structures, the transmission function is formulated such that
it has transmission zeros at finite frequencies beside the
zero and infinite reference frequencies. This means that the
resulting amplitude characteristic will have the features of
Elliptic response, i.e., it ripples equally in the passband and
the two stopbands.

2. THE APPROXIMATION PROBLEM

   Let us be given bandpass amplitude specifications in the
digital domain. It is required to approximate these
specifications directly with a bandpass wave digital ladder
structure exhibiting equiripple response in the three bands.
In reference domain, the corresponding transmission
function for even degree bandpass ladder structure is :
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where ψ = Σ + jφ is the complex frequency variable in the
reference domain. The polynomial )(g ψ is strictly Hurwitz
with degree n. On the other hand , )(f ψ  is restricted to
possess all of its roots on the imaginary axis. For a
bandpass ladder structure, the transmission function of Eq.
(1) is formulated as:
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Where n is the filter degree and m = n-2  Accordingly,
transmission zeros are generated at zero and infinite
frequencies. This is necessary for getting regular and non-
complicated structures.
The transmission function can be formulated as:
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Consequently, the squared amplitude function is:
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where:

 )(g)(g)(Qand)(f)(f)(R ψ−ψ=ψψ−ψ=ψ  (5)

The  restriction here is that the polynomial R(ψ) must have
all of its zeros on the imaginary axis and with even
multiplicity.  This insures that the property of the
polynomial  f(ψ) will be reserved.

3. THE APPROXIMATION PROCEDURE

   Now, the direct approximation procedure for direct
generation of a bandpass structure exhibiting equiripple
response in the three bands is summarized:

1- Translate the given loss specifications into
corresponding specifications for the squared amplitude
function.

2- Set initial degree n for  the filter. An optimal value for
the degree can be determined by using the same
procedure given for bandpass lattice structures [6].

3- At a set of frequencies (n+m+1 points), interpolate the
squared amplitude function for the coefficients c and d.
This is achieved by spreading the interpolation points
properly over the passband and the two stopbands, with
the band edges held as fixed points. Within each band,
the interpolation points can be initially distributed such
that in  the digital domain , they become in an
equidistant arrangement. This has been detected to be
sufficient for the convergence process. Note that the
digital frequencies are reflected into the reference
domain through the bilinear transformation:
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     where  p= σ +jω, is  the complex frequency variable in
      the digital domain and T is the sampling period.

4- Apply the Remez-exchange algorithm to change the set
of  interpolation points for optimal coefficient values.

5- Get the resulting amplitude response and test. If it
satisfies the given specifications within reasonable
reserve margins, stop. If it over- satisfies  or under-
satisfies the given specifications, decrease or increase
(respectively)  the filter degree and go to step 3.

6- After obtaining the optimal transmission function,
synthesize it to get the reference structure as follows.

4. THE SYNTHESIS PROBLEM

   The synthesis of the resulting transmission function is
summarized:
1- From the resulting transmission function )(S21 ψ ,

determine the corresponding reflection function:
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where due to losslessness [9-10], the following relationship
holds:
        )(f)(f)(g)(g)(h)(h ψ−ψ−ψ−ψ=ψ−ψ         (8)

2- From the resulting reflection function, and
assuming unity input reference resistor, the
corresponding input impedance is determied:
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3- Now, the realization is relying on the partial
extraction of the poles at infinite and zero
reference frequencies from the successive
resulting impedance functions, followed by
the extraction of the corresponding
transmission zeros from the remaining
admittance functions. In case of partial
extraction of a pole at infinite frequency, the
value of the extracted inductor is determined
according to:
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where φφφ k2s,.....,22s,21s  are the transmission zeros in
the second stopband. On the other hand, in case of partial
extraction of a pole at zero frequency, the value of the
extracted capacitor is determined according to:
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where φφφ q1s,....,12s,11s are the transmission zeros in the

first stopband.



4- After extracting a pole at infinite or zero frequency
from the impedance function, a transmission zero is
extracted from the remaining admittance function in
form of shunt arm composed of an inductor and
capacitor in series. The procedure is repeated until the
complete reference structure is obtained.

5- Finally, the wave digital realization is obtained by
applying 3-port series and parallel adaptors.

5. DESIGN EXAMPLE

   Now, let us apply the above method through a design
example. Considering bandpass loss specifications given as:

The first stopband extends from 0  to 3 kHz with min. loss
=35 dB

The passband extends from 4.5 to 7.5 kHz with max. loss =
0.5 dB.

The second stopband extends from 9 to 12.5 kHz with min.
loss =30 dB.

The sampling frequency is 25 kHz.

These specifications have been approximated by a wave
digital ladder structure with degree =6. The following  final
interpolation values were reached  after 6 iterations:

Freq.  kHz                                    Amplitude

1.8    0.01778279
2.74004216268                               0.0
3.0  0.01778279
4.5  0.9332543
4.7008990544                                1.0
5.346875                                         0.9332543
6.39294519129                               1.0
7.5  0.9332543
9.0   0.03162277
9.2566762390046                            0.0
10.271875                                        0.03162277

Accordingly, the following results are available:
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The resulting loss response is shown in Fig. 1. Assuming
unity input reference resistor, the resulting input impedance
is:
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This input impedance has been synthesized according the
procedure given in the text. The resulting reference
structure is shown by Fig. 1. The corresponding
element values are:

L1 = 1.6235201               L2 = 0.591044247
C2 = 0.315376997          C3 = 0.253672272
L4 = 8.1697425842         C4 = 0.9518180
L5 =8.5100560                 R5 = 6.7699070
C5 = 0.1077918

The wave digital realization  is  obtained by  applying  the
three-port series and parallel adaptors with the realizability
conditions be respected [4].
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 Fig. 1 The loss response and the reference structure
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