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ABSTRACT

SIGNAL AND IMAGE PROCESSING ALGORITHMS
USING INTERVAL CONVEX PROGRAMMING AND

SPARSITY

Kıvanç Köse

Ph.D. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Ahmet Enis Çetin

September, 2012

In this thesis, signal and image processing algorithms based on sparsity and in-

terval convex programming are developed for inverse problems. Inverse signal

processing problems are solved by minimizing the ℓ1 norm or the Total Varia-

tion (TV) based cost functions in the literature. A modified entropy functional

approximating the absolute value function is defined. This functional is also

used to approximate the ℓ1 norm, which is the most widely used cost function

in sparse signal processing problems. The modified entropy functional is contin-

uously differentiable, and convex. As a result, it is possible to develop iterative,

globally convergent algorithms for compressive sensing, denoising and restoration

problems using the modified entropy functional. Iterative interval convex pro-

gramming algorithms are constructed using Bregman’s D-Projection operator.

In sparse signal processing, it is assumed that the signal can be represented using

a sparse set of coefficients in some transform domain. Therefore, by minimizing

the total variation of the signal, it is expected to realize sparse representations

of signals. Another cost function that is introduced for inverse problems is the

Filtered Variation (FV) function, which is the generalized version of the Total

Variation (VR) function. The TV function uses the differences between the pixels

of an image or samples of a signal. This is essentially simple Haar filtering. In FV,

high-pass filter outputs are used instead of differences. This leads to flexibility in

algorithm design adapting to the local variations of the signal. Extensive simu-

lation studies using the new cost functions are carried out. Better experimental

restoration, and reconstructions results are obtained compared to the algorithms

in the literature.

Keywords: Interval Convex Programming, Sparse Signal Processing, Total Vari-

ation, Filtered Variation, D-Projection, Entropic Projection, Inverse Problems.
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ÖZET

ARALIK DIŞBÜKEY PROGRAMLAMA VE

SEYREKLİK KULLANAN İMGE VE SİNYAL İŞLEME

ALGORİTMALARI

Kıvanç Köse

Elektrik ve Elektronik Mühendisliği, Doktora

Tez Yöneticisi: Prof. Dr. Ahmet Enis Çetin

Eylül 2012

Bu tezde ters problemleri çözmek için kullanılabilecek aralık dışbükey pro-

gramlama ve seyreklik bilgilerini kullanan algoritmalar geliştirilmiştir. Sinyal

işleme literatüründe ters problemler ℓ1 normu ya da Toplam Değişinti bazlı

maliyet fonksiyonları kullanılarak çözülür. Bu tezde mutlak değer fonksiyonunu

yaklaşıklayan değiştirilmiş entropi fonksiyonelini tanımladık. Bu fonksiyonel

aynı zamanda seyrek sinyal işleme konusunda en sıklıkla kullanılan maliyet

fonksiyonu olan ℓ1 normunuda yaklaşıksamaktadır. Önerdiğimiz değiştirilmiş

entropi fonksiyoneli sürekli, dışbükey ve her yerde türevlenebilirdir. Bu

özelliklerinden dolayı değiştirilmiş entropi fonksiyonelini kullanarak sıkıştırmalı

algılama, gürültü temizleme ve geri çatım gibi problemlere döngülü, her yerde

yakınsayan algoritmalar geliştirmek mümkündür. Bregman tarafından bulu-

nan D-İzdüşümü işletmeni kullanılarak döngülü aralık dışbükey programlama

algoritmaları geliştirilebilir. Seyrek sinyal işlemede, bir sinyalin herhangi bir

dönüşüm uzayında seyrek olduğu varsayılır. Bu varsayımdan yola çıkarak, bir

sinyalin Toplam Değişintisinin enküçüklenmesi ile sinyalin seyrek temsillerinin

gerçellenmesi sağlanması umulmaktadır. Biz bu tezde Filtrelenmiş Değişinti

adını verdiğimiz, yeni bir maliyet fonksiyonu önermekteyiz. Bu fonksiyon

aynı zamanda Toplam Değişinti fonksiyonunun genelleştirilmiş halidir. Toplam

Değişinti sinyalin sadece yanyana iki örneğinin ya da yanyana iki pikselinin

farkını kullanır. Bu aslında basit bir Haar filtrelemesinden başka birşey değildir.

Filtrelenmiş Değişinti ise farklar yerine yüksek geçirgenli filtre çıktıları kul-

lanılır. Bu bize sinyal içindeki farklı yerel değişintilere adaptasyon olanağı

sağlar. Bu tez kapsamında önerilen yeni maliyet fonksiyonlarını kullanan kap-

samlı simülasyon yapılmıştır. Bu önerilen yeni maliyet fonksiyonları sinyal geri

çatımı, sinyallerin gürültüden arındırılması, ve birden fazla boğumlu ağlarda,
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boğum çıktılarının gürültüden arındırılması ve tahmin edilmesi problemleri kul-

lanılarak test edilmiştir. Literatürdeki yöntemlere kıyasla daha başarılı sinyal

geri çatımı ve oluşturulması sonuçları gözlemlenmiştir.

Anahtar sözcükler : Aralık Dışbükey programlama, Seyrek Sinyal İşleme, Toplam

Değişinti, Filterelenmiş Değişinti, D-izdüşüm, Entropik İzdüşüm, Ters Problem-

ler.
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Chapter 1

INTRODUCTION

In many signal processing applications, it may not be possible to have a direct

access to the original signal. Instead, we can only access to measurements, which

are noisy, irregularly taken, or sometimes below the sampling rate limit deter-

mined by Shannon-Nyquist theorem [5]. The inverse problem of reconstructing

or estimating the original signal from this incomplete or defective set of mea-

surements has always drawn the attention of the researchers. Recently, with the

introduction of the Compressive Sensing (CS) [6] framework, research on sparsity

has reached to a peak. Most signals such as speech, sound, image, and video

signals are sparse in some transform domain such as DCT, and DFT. CS takes

advantage of this fact and researchers developed methods for reconstructing the

original signal from randomized measurements. Concept of sparsity has already

been used in other inverse problems including deconvolution, image restoration

from noisy and blurred measurements [7–10].

In this thesis, new signal processing algorithms for inverse problems are de-

veloped. These algorithms are based on sparsity [11] and interval convex pro-

gramming [12]. Bregman’s D-Projection [13], convex programming [12, 14, 15]

and Total Variation (TV) [16] concepts from the literature are utilized to develop

these algorithms. New CS signal reconstruction, signal denoising, and adaptive

filtering methods are developed using these fundamental concepts.
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The rest of the thesis is organized as follows. In the succeeding parts of

Chapter 1, related algorithms in the literature are reviewed. In Section 1.2, the

CS framework and some of the CS reconstruction algorithms are presented. The

notation that is used throughout this thesis is also introduced in this section.

In Section 1.3, the TV concept and its signal processing applications are briefly

presented.

In Chapter 2, the modified entropy functional is defined. This functional

approximates the ℓ1 norm, which is the preferred cost function in sparse signal

processing. Then, Bregman’s D-Projection [13] operator is linked to the modified

entropy functional, and entropy projection operator is introduced. This projec-

tion operator allows us to solve sparse signal processing problems as interval

convex programming problems. Using row-action methods, large problems can

be divided into smaller subproblems, and solved in an iterative manner through

local D-projections. The proposed iterative algorithm is globally convergent, if

certain starting point conditions are satisfied [13].

In Chapter 3, first the Filtered Variation (FV) concept is linked to the well

known Total Variation (TV) function. Instead of using a single differencing op-

erator as in TV, it is possible to use “high-pass filters” in FV. High-pass filter

design is a well-established field in signal processing. As a result, the FV ap-

proach allowed high-pass filters to be incorporated into the TV framework. In

Section 3.1, six different FV constraints, which impose bounds on the signal in

different transform domains (e.g. spatial, Fourier, DCT) are introduced. These

FV constraints will be used for signal reconstruction, and denosing purposes in

Sections 4.1 and 5.2.

Starting from Chapter 4, signal reconstruction (Chapter 4), and signal denois-

ing (Chapter 5) problems are discussed respectively, and new signal processing

algorithms based on interval convex programming, modified entropy functional,

and FV concepts are introduced. In Section 4.1, FV method is used for re-

constructing signals from irregularly sampled data. Typically, low-pass filtering

based interpolation algorithms are used for this purpose. In this thesis, an iter-

ative approach, in which alternating time and frequency domain constraint are
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applied on the irregularly sampled data to estimate its regularly sampled ver-

sion. Reconstruction results using different amount of samples, as well as the

performance of the algorithm in noisy scenarios are presented.

In Section 4.2, a novel CS reconstruction algorithm, that uses modified entropy

function based D-projections and row action methods is presented. The proposed

algorithm divides the large problem into smaller subproblems defined by the rows

of the measurement matrix. Each linear measurement defined by the rows of the

measurement matrix defines a hyperplane constraint. The proposed algorithm

individually solves these smaller subproblems in an iterative manner by taking

D-projections onto these hyperplanes. The iterative algorithm converges to the

solution of the large problem, in this way. Since the modified entropy functional

is a convex cost function, projection on convex sets (POCS) theorem guarantees

the convergence of the proposed iterative approach [17]. Simulation results on

1D and 2D signals, as well as a comparison with a well known algorithm from

the literature called CoSaMP [18] are presented.

Signal denoising is another application area that we covered in this thesis.

Both, a locally adaptive version of the TV denoising algorithm presented in [19]

and FV based novel denoising algorithm are developed in this thesis. In Sec-

tion 5.1, a locally adaptive TV denoising algorithm for signal denoising is pre-

sented. The TV denoising algorithms in the literature tries to minimize the same

TV cost function on the entire image at once. This approach has two main draw-

backs. All portions of a signal may not have similar edge content or may not have

the same texture. Therefore, using the same TV minimization parameters on the

entire image may oversmooth the edges or can not clean the noise at smooth

regions effectively. Moreover, as the signal gets larger, the TV minimization

approach may become computationally too complex to solve.

The developed locallly adaptive total variation (LATV) approach overcomes

these drawbacks by block processing the image, and solving the TV minimization

problem locally in each block. This block based approach also enables us to vary

the TV denosing parameters according to the edge content of the blocks. The

advantages of the proposed LATV approach over the TV denoising method are
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illustrated through image denoising examples.

In Section 5.2, a FV constraints based image denoising algorithm is presented.

The proposed algorithm applies a set of FV constraints on the noisy image in a

cascaded and cyclic manner. Through this cascaded and cyclic approach, the

denoised signal that lies in the intersection of the FV constraints set is obtained.

The proposed algorithm is compared with the results of the denoising method

in [3].

In Chapter 6, entropy projection and FV constraints are used on a multi-node

network for adaptation and learning purposes [20]. First the multi-node network

framework by Sayed et al. [4] is introduced. Then, in Section 6.2, an entropy

projection based adaptation scheme is presented. Since the modified entropy

functional estimated the ℓ1 norm much better than the ℓ2 norm, it has much

better adaptation performance under heavy-tailed noise such as ε-contaminated

Gaussian noise. The adaptation algorithm presented in [4] and the proposed

algorithm are compared against different noise scenarios.

In Section 6.3 new diffusion adaptation algorithms that uses the Total Vari-

ation (TV) and Filtered Variation (FV) frameworks are introduced. The TV

and FV based schemes combine the information based on both spatially neigh-

boring nodes and the last temporal state of the node of interest in the network.

Experimental results indicate that the proposed algorithms lead to more robust

systems, which provide improvements compared to the reference approach under

heavy tailed noise such as ε-contaminated Gaussian noise.

1.2 Compressive Sensing

In discrete time signal processing applications, sampling is the first processing

step. In this process, samples from a continuous time signal are collected by

making equidistant measurements from the signal. Nyquist-Shannon sampling

theorem [5] defines the necessary perfect reconstruction conditions that should

be considered while discretizing a continuous time signal. When a bandlimited
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continuous time signal is sampled with a sampling frequency that is at least two

times larger than its bandwidth, perfect reconstruction is possible using simple

low pass filtering (sinc interpolation). The sampling rate offered by Nyquist-

Shannon sampling theorem constitutes a lower bound for perfect reconstruction

in time/spatial domain.

In most of the signal processing applications, first the signal is sampled ac-

cording to the Nyquist-Shannon sampling criteria, and then transformed into

another domain (e.g., Fourier, wavelet, discrete cosine transform domains), in

which it has a simple representation. This simple representation can be obtained

by getting rid of the negligibly small coefficients in the transform domain. This

is an ineffective way of sampling a signal, because the information that will be

thrown away after the signal transformation stage is also measured through the

sampling process. However, sampling process is carried out by analog electronic

circuits in many practical systems and it is very difficult to impose intelligence

on analog systems. Therefore, we have to sample signals and images in a uniform

manner in practice.

The sampling procedure would be more effective if it would be possible to

sample the signal directly at the sparsifying transform domain, and just mea-

sure those few non-zero entries of the transformed signal. However, there are

two problems with this approach: (i) the user may not have a prior knowledge

about which transform domain to use, (ii) the user may not apriori know which

transform domain coefficients are non-zero.

Let’s assume that we have a mixture of two pure sinusoidal signals, whose

frequencies are f1, and f2 respectively. According to Nyquist-Shannon sampling

theorem, this signal should be sampled at least at rate of 2|f1−f2| Hz (two times

its bandwidth). On the other hand, the same signal can be represented using just

four impulses in frequency domain. Therefore, it has a 4-sparse representation in

frequency domain. If the sampling is done in the frequency domain, making only

four measurements at the location of the impulses would be enough for perfect

reconstruction.

However, in a typical signal processing application, the locations of those
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four non-zero coefficients cannot be known beforehand. Therefore, one needs to

sample the signal at the Nyquist sampling rate and after that he/she can find the

location of those impulses.

The CS framework [6, 11, 21] tries to provide a solution to this problem by

making compressed measurements over the signal of interest. Assume that we

have a signal x[n], and a transformation matrix ψ that can transform the signal

into another domain. The transformation procedure is simply finding the inner

product of the signal x[n] with the rows ψi of the transformation matrix ψ as

follows

si =< x, ψi >, i = 1, 2, ..., N, (1.1)

where x is a column vector, whose entries are samples of the signal x[n] . The orig-

inal signal x[n] can be reconstructed using the inverse transformation operation

in a similar fashion as

x =
N
∑

i=1

si.ψi (1.2)

or in vector form as

x = ψ.s (1.3)

where s is a vector containing the transform domain coefficients, si. The basic

idea in digital waveform coding is that the signal should be approximately re-

constructed from only a few of its non-zero transform coefficients. In most cases

including JPEG image coding standard, the transform matrix ψ is chosen such

that the new signal s is easily representable in the transform domain with a small

number of coefficients. A signal x is compressible, if it has a few large valued

si coefficients in the transform domain and the rest of the coefficients are either

zeros or very small valued.

In compressive sensing framework, the signal is assumed to be a K-Sparse

signal in a transformation domain such as DFT domain, DCT domain, or wavelet

domain. A signal with length N is K-Sparse, if it has K non-zero and (N −K)

zero coefficients in a transform domain. The case of interest in CS problems is

when K << N i.e., sparse in the transform domain.
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The CS theory introduced in [11,21–23] tries to provides answers to the ques-

tion of reconstructing a signal from its compressed measurements y, which is

defined as follows;

y = φ.x = φ.ψ.s = θ.s (1.4)

where φ, and θ are the M × N measurement matrices in signal and transform

domains respectively, and M << N . Applying simple matrix inversion or inverse

transformation techniques on compressed measurements y does not results in

a sparse solution. A sparse solution can be obtained by solving the following

optimization problem

sp = argmin ||s||0 such that θ.s = y. (1.5)

However this problem is a NP-complete optimization problem, therefore its so-

lution can not be found easily. If certain conditions such as Restricted Isometry

Property (RIP) [5,6] hold for the measurement matrix φ , then the ℓ0 norm min-

imization problem (1.5) can be approximated by the ℓ1 norm minimization as

follows

sp = argmin ||s||1 such that θ.s = y. (1.6)

It is shown in [21, 22] that constructing φ matrix from random numbers, which

are i.i.d Gaussian random variables, and choosing the number of measurements

as cKlog(N/K) < M ≪ N satisfies the RIP conditions. This lower boundary

for the number of the measurements can be decreased, if more constraints can

be imposed on the signal model as in Model based Compressed Sensing approach

in [24]

1.2.1 Compressed Sensing Reconstructions Algorithms

In the following parts of the thesis, a brief summary of the CS reconstruction

algorithms is presented. The algorithms are categorized into 3 main groups as:

ℓ1 minimization, greedy, and combinatorial algorithms.
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1.2.1.1 ℓ1 Minimization Algorithms

As mentioned in Section 1.2, the CS reconstruction algorithm can be formulated

as an ℓ1 regularized optimization problem and can be solved accurately if certain

conditions such as RIP are satisfied. On the other hand, through some modifi-

cation the basis problem can be relaxed and converted to a convex optimization

problem, which can be accurately and efficiently solved using numerical solvers.

The equality constraint

argmin
s

||s||1

subject to θ.s = y

(1.7)

version of the CS problem can be solved using linear programming methods. If

the measurements are contaminated by noise then the CS problem can be relaxed

as
argmin

s

||s||1

subject to ||θ.s− y||22 < ε
(1.8)

where ε > 0 constant depends on the noise power. This version of the problem

can be solved using a conic constraint techniques respectively.

Basis Pursuit [25, 26] is one of the most famous algorithm of this type. It

is a variant of linear programming that can be solved using standard convex

optimization methods. Several researchers also developed and adapted other

convex optimization techniques to solve the CS recovery problem. They convert

the ℓ1 minimization based CS reconstruction algorithms in unconstrained

x = argmin
1

2
||θs− y||22 + λ||s||1 (1.9)

or the constrained
argmin

s

||s||1

subject to ||θs− y||22 < ǫ
(1.10)

minimization problems, which can be solved efficiently using convex optimization

techniques [27–30]. For each ǫ in (1.10), there exits a conjugate λ value in (1.9),

using which both of the formulations will lead to the same results.
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1.2.1.2 Greedy Algorithms

Greedy algorithms aim to find the best or optimal solution for a subset of the

large CS problem at each stage. It then aims to achieve the global optimum as the

subset is extended to the entire problem. Some of the most well-known greedy

CS reconstruction algorithms in the literature are Iterative Hard Thresholding

(IHT) [31], Orthogonal Matching Pursuit (OMP) [32], and Compressive Sampling

Matching Pursuit (CoSaMP) [18].

Iterative hard thresholding algorithm starts with an initial estimate of the

k−sparse signal s0 as a length-N zero vector. Then the algorithm iterates a

gradient descent step with respect to the measurements matrix and obtains s1.

The hard thresholded version s1H of the current iterate s1 is then obtained through

the hard thresholding operator

s1H [n] =

{

s1[n] , |s1[n]| > T

0 , |s1[n]| < T
, n = 1, 2, ..., N. (1.11)

which keeps k largest coefficients of iterate and sets the rest to zero. Then, the

algorithm do another gradient descent opreation and proceeds with the same

algorithmic steps until a stopping criterion is met. This stopping criteria can

either be running for a certain amount of iterations or when the distance between

to consecutive iterates become smaller than a certain threshold.

The OMP algorithm also starts with an initial estimate of the sparse signal

s0 as a vector of zeros. Then it finds the column θ∗i of the measurement matrix

θ that is most correlated with the measurement vector y. Lets assume that jth

column of the measurement matrix θ∗j results in the highest correlation with the

measurement vector y. Then the inner product of the measurement vector with

jth column of the measurement matrix is taken as

sj =< y, θ∗j > (1.12)

where sj is the jth coefficient of the sparse vector. At the end of the first step,

the residual of the measurement vector y1 after the first iteration is calculated as

y1 = y − s̃jθ
∗
j (1.13)
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Then, the algorithm reiterates using the residual vector y1, updated signal s̃1 and

the rest of the measurement matrix θ1

θ1 = θ∗k, k = 1, 2, 3, ...,M, k 6= j (1.14)

The algorithm terminates if the iteration count reaches to a limit or the error

||y−θsn|| decreases under a certain predefined threshold at the nth iteration. The

OMP algorithm is so popular that variants of the algorithm such as: Stagewise

OMP (StOMP) [33], regularized OMP (ROMP) [34], and Expectation Maximiza-

tion based Matching Pursuit (EMMP) [35] are also developed by researchers.

CoSaMP [18] is another frequently used iterative CS reconstruction algorithm.

Besides the measurement matrix and the measurement vector, CoSaMP algorithm

also needs the exact sparsity level of the signal as a parameter to reconstruct

the original signal from the CS measurements. The algorithm is composed five

stages: (i) identification, (ii) support merger, (iii) estimation, (iv) pruning, and

(v) sample update. CoSaMP iterations starts with an initial estimate for the

residuals r0 = y. In the identification stage, the algorithm estimates the signal

proxy p1 from the current residual estimate as

p1 = θ∗r0 (1.15)

where θ∗ is the conjugate transpose of the measurement matrix.

In the second step, the support of the current estimate is merged with the

support from the last step. Then the projection of the observations y on the de-

termined signal support is taken using pseudo inverse of the measurement matrix

as

s1 = (θ∗θ)−1θ∗y (1.16)

In the pruning step, the largest k components of the projection vector s̃1 are kept

and the rest of the entries are set to zero. In last stage, the residual vector is

updated using the current signal estimate as

r1 = y − θ HT (s1) (1.17)
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where HT (.) is the hard thresholding operator. Details, as well as the pseudo code

of the algorithm is given in [18]. The proposed CS reconstruction algorithms will

be compared with the CoSaMP algorithm in Section 4.2.

1.2.1.3 Combinatorial Algorithms

Combinatorial CS algorithms are originated from combinatorial group testing

methods from theoretical computer science community [36]. This type of algo-

rithms rely on designing the measurement or test matrices in such a way that the

original signal can be reconstructed from minimum number of tests. The mea-

surement matrix that is used in these type of approaches consists of two main

parts. The first part locates the large components of the signal and the second

part estimates those large components. Building a measurement matrix with such

structure requires the user to freely play with the coefficients of the measurement

matrix. This is in contrast with the RIP property, which puts restrictions on the

measurement matrix to guarantee the convergence of the CS problem.

If such an effective matrix that satisfies the the RIP conditions can be de-

signed, combinatorial methods work extremely fast.This is the main advantage

of the combinatorial algorithms. Moreover, contrary to other CS recovery al-

gorithms, the computational complexity of combinatorial algorithms increase

linearly proportional to the sparsity level of the signal, not the signal length.

Therefore they are independent of the problem size. However, their structural

requirements on the measurement matrix limits their use in practice. Among the

several algorithms, Heavy hitters on steroids (HHS) pursuit [37] and sub-linear

Fourier transform [38] are the most well-known ones.

1.2.2 Applications of Compressed Sensing

CS sampling framework, has drawn attention from several fields such as electrical

and electronics engineering, computer engineering, physics, etc... Resarchers have

applied ideas from CS framework to a diverse set of research topics. One of the
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earliest application that CS framework made debut is the Single Pixel Camera

[21, 39, 40]. Single pixel camera is composed of a lens, a DMD, and a single

pixel sensor. The sensor takes compressed measurements of the captures scene,

using the random sampling pattern on the DMD array. The system is actually

working like a camera and takes several measurements for a certain amount of

time with different sampling patterns on the DMD array. Then the picture of

the captured scene is reconstructed from the compressed measurement using any

of the methods that were described in this section. Video processing, coding

[41], background subtraction [42] can be named as some of the other famous CS

applications in the field of imaging.

Medical imaging is another field that CS framework is frequently applied to.

Especially in Magnetic Resonance Imaging (MRI) field, CS has extensively been

used. MRI data is implicitly sparse in spatial difference or in wavelet domains

[43, 44]. In fact, angiograms are sparse in pixel representations [45, 46]. Due

to the sparse nature of the captured images, CS framework has been frequently

used for MRI applications. Other medical imaging fields that CS found field of

applications are photo-acoustic tomography [47] and computerized tomography

[48]. Another imaging field that CS frameworks is used is hyperspectral imaging.

In [49], the authors developed a method for taking compressed measurements

using a modified hyperspectral camera. They also developed the corresponding

reconstruction framework.

Other than imaging, CS based algorithms are developed also for optics ap-

plications. In [50], the authors developed an algorithm for the reconstructing

sub-wavelength information from the far-field of an optical image using CS re-

constructions methods. In [51], authors developed a novel measurement matrix

(pseudo-random phase-shifting mask) for sampling an optical field and related

CS based reconstruction algorithm. Holography is another field in optics,in which

several CS based algorithms are developed [52–54].

As another medical application, in [55], the authors presented a novel DNA

microarray called compressive sensing arrays (CSM), which can take compressed

measurement from the target DNA. They developed several methods for probe
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design and CS recovery, based on the new measuring procedure that they devel-

oped.

Audio coding [56], Radar signal processing [57–59], Remote Sensing [60, 61],

Communications [62–64], and Physics [65,66] are some of the other research fields

that CS framework found application ares.

1.3 Total Variational Methods in Signal Pro-

cessing

The ℓp norm based regularized optimization problems take the signal as a whole

and uses the ℓp−norm based energy of the signal of interest as the cost metric.

However, most of the signals that are addressed in signal processing applications

are low-pass in nature, which means that the neighboring samples are highly

correlated with each other in general. Instead of considering the p−norm energy

of the signal samples, the TV norm considers the ℓ1 energy of the derivatives

around each sample. So, it uses the relation between the samples rather than

considering them individually. In this way, the TV norm based solutions preserve

the edges and boundaries in an image more accurately, and result in sharper

image reconstruction results. Therefore, the TV norm is more appropriate for

image processing applications [67, 68].

Total Variation (TV) functional was introduced to signal and image processing

problems by Rudin et al. in 1990’s [3,16,69–74]. For a 1-D signal x of length N ,

the TV of x is defined as,

||x||TV =

N−1
∑

n=1

√

(x[n]− x[n + 1])2. (1.18)

or in N-Dimension,

||I||TV =

∫

Ω

|▽I|dI (1.19)

where I is an N-dimensional signal, ▽ is the gradient operator and Ω ⊆ RN is

the set of the samples of the signal. TV functional is utilized by several purposes
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in the signal, and image processing literature. In the forthcoming subsections of

the thesis, only the ones that are related to compressive sensing, and denoising

applications are covered.

1.3.1 The Total Variation based Denoising

In this section, signal denoising problems in literature and their formulations are

reviewed. Formulations regarding the two-dimensional case (e.g. image denois-

ing) are used through the review, however extending the ideas to R
N is straight-

forward. Let the observed signal y be a corrupted version of the original signal

x by some noise u as follows

yi,j = xi,j + ui,j. (1.20)

where [i, j] ∈ Ω, and yi,j, xj,j, uj,j are the pixels at the [i, j]th location of the

observed, original, and noise signals respectively. The aim of the denoising al-

gorithms are to estimate the original signal x from the noisy observations with

highest possible SNR. The initial attempts to achieve variational denoising in-

volves least squares ℓ2 fit, because it leads to linear equations [75–77]. These

type of methods try to solve the following minimization problem

min

∫

Ω

(
d2x

di2
+
d2x

dj2
)2

subject to

∫

Ω

y =

∫

Ω

x and

∫

Ω

(x− y)2 = σ2.

(1.21)

where x is the estimated image, and d2x
di2

+ d2x
dj2

are the second derivatives in

horizontal and vertical directions of the image respectively. The system given

in (1.21) is easy to solve using numerical linear algebraic methods. However the

results are not satisfactory [16].

Using the ℓ1 norm based regularizations in (1.21) is avoided because they

can not be handled by purely algebraic frameworks [16]. However, when the

solutions of the two norms are compared, the ℓ1 norm based estimations are

visually much better than the ℓ2 norms based approximations [69]. In [67], the
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authors introduced the concept of shock filters to the image denoising literature.

In [67], the shock filtered version of an image ISF is defined as follows

ISF = −▽(I)F (▽2(I)) (1.22)

where F is a function that satisfies F (0) = 0, sign(s)F (s) ≥ 0. The shock filter

is iteratively applied to an image as

In+1 = In − InSF (1.23)

where In and In+1 are the image after nth and n + 1st iterations. The authors

showed in [67] that, shock filters can deblur images for noiseless scenarios. How-

ever, as shown in Figure 1.1, shock filters given in [67] do not change the TV of

the signal that it operates on. Therefore, they can work on noisy and blurred im-

ages. Recently in [78], the authors developed shock filters based algorithms that

can also deblur noisy images. In [68], the authors investigate the TV preserving

enhancements on images. They developed finite difference schemes for deblurring

images, without distorting the variation in the original image.
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Figure 1.1: Shock filtered version of a sinusoidal signal after 450, 1340, and 2250
shock filtering iterations. To generate this figure, the code in [1] is used.
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In [16], a TV constrained minimization algorithm for image denoising is pro-

posed. This article is one of the first article that introduced the TV functional to

the signal processing society. The algorithm solves the denoising problem through

the following constrained minimization formulation

min

∫

Ω

√

(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2 = ||x||TV

subject to

∫

Ω

y =

∫

Ω

x

∫

Ω

1

2
(y− x)2 = σ2,

(1.24)

where σ > 0 is a constant, which heavily depends on noise and ||x||TV is the TV

norm. The authors used Euler-Lagrange method to solve (1.24).

Another formulation for the image denoising problem is proposed by Cham-

bolle in [19] as follows

min
x

||x||TV

subject to ||y − x|| ≤ ε.
(1.25)

or in Lagrangian formulation

min
x

||y− x||2 + λ||x||TV (1.26)

where ε is the error tolerance, and λ is the Lagrange multiplier. For each ε

parameter in (1.25), there exists a conjugate λ parameter in (1.26), using which

the solution of both formulations attain the same results. It is important to note

that both (1.25), and (1.26) try to bound the variation between the pixels on

the entire image. Therefore, some of the high-frequency details in the image may

be over-smoothed or some the noise at low-frequency regions cannot be cleaned

effectively.

In the Section 5.1 of this thesis, the formulation of Chambolle’s image denois-

ing algorithm [19] is revisited and a locally adaptive version of the this algorithm

is presented.
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1.3.2 The TV based Compressed Sensing

Most of the CS reconstruction algorithms in literature use the ℓp norm based

regularization schemes where p ∈ [0, 1]. A brief review of such algorithms was

given in Section 1.2. However, as mentioned in Section 1.3, the TV norm is more

appropriate for image processing applications [67, 68]. The reason why the TV

norm is more appropriate for CS reconstruction is as follows. The transitions

between the pixels of a natural image are smooth, therefore the underlying gradi-

ent of an image should be sparse. As the ℓp norm based regularization results in

sparse signal reconstruction, the TV norm based regularization results in signals

with sparse gradients. This observation lead the researchers to develop new CS

reconstruction algorithms, by replacing the ℓp norm based regularization with the

TV regularization steps as follows

argmin
x

||x||TV

subject to θ.s = y

(1.27)

where ||x||TV is defined as in (1.24) and the relation between s and x is de-

fined as in (1.3). However, the model in (1.27) is hard to solve, since the TV

norm term is non-linear and non-differentiable. Some of the most well-known

CS reconstruction algorithms that solves the TV regularized CS problem are:

Total Variation minimization by Augmented Lagrangian and Alternating Direc-

tion Minimization (TVAL3) [79], Second Order Cone Programming (SOCP) [80],

ℓ1-Magic [11, 22, 81], and Nesterov’s Algorithm (NESTA) [82].

In [79] Li introduced TVAL3 algorithm that efficiently solves the TV mini-

mization problem in (1.27) using a combination of Augmented Lagrangian Model

and Alternating Minimization schemes. In the thesis, the author also introduces

some measurement matrices with special structures that accelerates the TVAL3

algorithm.

The SOCP algorithm given in [80] reformulated the TV minimization problem

as a second-order cone program, and solves it using interior point algorithms.

SOCP is very slow since it uses interior-point algorithm and solves a large linear

17



system at each iteration.

The ℓ1-Magic algorithm also reformulated the TV regularized CS problem

as a second-order cone problem. But instead of using interior-point method, it

uses log-barrier method to solve the problem. The ℓ1-Magic algorithm is more

efficient than SOCP in terms of computational complexity, because it solves the

linear system in an iterative manner. However, it is not effective in large-scale

problems, since it uses Newton’s method at each iteration to approximate the

intermediate solution.

The NESTA [82] algorithm is a first order method of solving Basis Pursuit

problems. The developers used Nesterov’s smoothing techniques [83] to speed up

the algorithm. It is possible to use the NESTA algorithm for the TV regulariza-

tion based CS recovery, by modifying the smooth approximation of the objective

function [79].

1.4 Motivation

Inverse problems cover a wide range of applications in signal processing. An

algorithm developed for a specific problem can easily be adapted to several other

type of inverse problems. For example TV functional is first introduced to the

signal processing literature as a method for denoising in [16]. Then it found

wide range of applications in signal reconstruction problems such as compressive

sensing. Actually compressive sensing itself is example for this situation.

CS was first introduced as an alternative sampling scheme. During recent

years, both sampling and reconstruction parts of the CS algorithms became a

subject of research. Several scientists developed new methods for constructing

more efficient measurement matrices for finding more effective ways of taking

compressed measurements, whereas some other scientists developed new recon-

struction methods. Moreover, the efforts to apply the CS framework to different

applications can not be underestimated.
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Besides developing novel tools, researchers also took several other algorithms

and methods from literature and adapted/applied them to inverse problems. TV

functional and interval convex programming are two of the several algorithm of

this kind. Especially from optimization literature countlessly many algorithms

are migrated to the signal processing field and used succesfully.

In this thesis, our motivation is to develop novel methods that can be used

in several different type of inverse problems. In that sense, our aim is not only

developing a specific algorithm but also a generic tool that can be widely used.

Inspired from Bregman’s D-Projection operation and related row-action methods,

two new tools are developed for sparse signal processing applications. First the

D-Projection concept is integrated with a convex cost functional called modified

entropy functional, which is a shifted and even-symmetric version of the original

entropy function. The proposed functional well estimates the ℓ1 norm; therefore,

it is well suited for obtaining sparse solutions from convex integer programming

problems. Moreover, due the convex nature of its cost function, entropic projec-

tion is suitable for row-iteration type of operations, in which smaller and indepen-

dent subproblems in the entire problem are solved individually in an iterative and

cyclic manner and yet the solution converges the solution of the large problem.

Then, the well-known TV functional based methods are improved through

a high-pass filtering based variation regularization scheme called Filtered varia-

tion (FV). FV framework enables the user to integrate various types of filtering

schemes into the signal processing problems that can be formulated as variation

regularization based optimization problems.

As mentioned earlier, the applicability of the new tools are not limited to a

specific inverse problem. In this thesis, the efficacy of the new tools are illustrated

on three different problems. However, the applicability of the proposed methods

to other signal processing examples is also possible. Starting from next chapter,

first these new tools are defined, then they are applied to three different type of

inverse problems namely as signal reconstruction, signal denoising and adaptation

and learning in multi node networks.
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Chapter 2

ENTROPY FUNCTIONAL

AND ENTROPIC

PROJECTION

In this section, the modified entropy functional is introduced as an alternative

cost function against the ℓ1 and the ℓ0 norms, and entropic projection operator

is defined. Bregman’s D-Projection operator introduced in [13] is utilized for this

purpose. Bregman developed D-Projection, and related convex optimization algo-

rithms in 1960’s and his algorithms are widely used in many signal reconstruction

and inverse problems [3, 12, 15, 17, 70, 84–90].

The ℓp norm of a signal x ∈ R
N is defined as follows

||x||p =

(

∑

i

xpi

)
1

p

, i = 1...N. (2.1)

The ℓp norm is frequently used as a cost function in optimization problems such

as the ones in [4, 21, 22]. Assume that M measurements yi are taken from a

length-N signal x as

θi.s = yi for i = 1, 2, ...,M, (2.2)

where θi is the i
th row of the measurement matrix θ and s is the k-sparse trans-

form domain representation of the signal x. Each equation in (2.2) represents
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a hyperplane Hi ∈ R
N , which are closed and convex sets in R

N . In many in-

verse problem, the main aim is to estimate the original signal vector x or its

transform domain representation s using the measurement vector y. If M = N

and the columns of the measurement matrix are uncorrelated (hyperplanes are

orthogonal to each other), then the solution can be found through inversion of

the measurement matrix θ.

However, in most of the signal processing applications, we either have less

number of measurements (M < N), e.g. CS, or the measurements are noisy,

e.g. denoising. In this case, the best we can do is to find the solution that lies

at the intersection of the hyperplanes or hyperslabs defined by the rows of the

measurement matrix. This problem can be converted to an optimization problem

as follows
min g(s)

subject to θi.s = yi, i = 1, 2, ...,M.
(2.3)

where g(s) is the cost function, and it can be chosen as any ℓp norm. When p > 1

the ℓp norm cost function is convex. Therefore, convex optimization tools can be

utilized. However, when p ∈ [0, 1], e.g. CS problems defined in (1.5) and (1.6),

the cost function is neither convex, nor differentiable everywhere. Due to this

reason, convex optimization tool cannot be used directly.

Several researcher replaced the ℓ0 norm in (1.5) with the ℓp norm, where

p ∈ (0, 1) [91] for solving the CS problems. Even if the resulting optimization

problem is not convex, several studies in the literature have addressed these ℓp

norm based non-convex optimization problems and apply their results to the

sparse signal reconstruction example [92,93]. In this thesis, an entropy functional

based cost function is used to find approximate solutions to the inverse problems

defined in (2.3), which will lead us to the entropic projection operator.

The entropy functional

g(v) = −v log v (2.4)

has already been used to approximate the solution of ℓ1 optimization and linear

programming problems in signal and image reconstruction by Bregman [13], and

others [12, 84, 87, 89, 94]. However, the original entropy function −vlog(v) is not
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valid for negative values of v. In signal processing applications, entries of the

signal vector may take both positive and negative values. Therefore, the entropy

function in (2.4) is modified and extended to negative real numbers as follows

ge(v) =

(

|v|+
1

e

)

ln

(

|v|+
1

e

)

+
1

e
, (2.5)

and the multi-dimensional version of (2.5) is given by

ge(v) =

N
∑

i=1

(

|vi|+
1

e

)

ln

(

|vi|+
1

e

)

+
1

e
, (2.6)

where v is a length-N vector with vi as its entries and e is the base of natural

logarithm or the Euler’s number. Actually, by changing the base of the logarithm,

a family of cost functions can be defined. For any base b, the modified entropy

function can be defined as

gb(v) =

(

|v|+
1

bln(b)

)

logb

(

|v|+
1

bln(b)

)

+
1

bln(b) ln(b)
, (2.7)

Through out the thesis we will use ln and log interchangeably, and if we would

like to use logarithm with another base we will write the base of the logarithm

explicitly.

The modified entropy function is a new cost function that is used as an alterna-

tive way to approximate the CS problem. In Figure 2.1, plots of the different cost

functions including the modified entropy function with base e as well as the abso-

lute value g(v) = |v| and g(v) = v2 are shown. The modified entropy functional

(2.5) is convex, and continuously differentiable, and it slowly increases compared

to g(v) = v2, because ln(v) is much smaller than v for high v values as seen in

Figure 2.1. Moreover, it well approximates ℓ1 norm, which is frequently used in

sparse signal processing applications such as compressed sensing and denoising.

Bregman provides globally convergent iterative algorithms for problems with

convex, continuous and differentiable cost functionals. His iterative reconstruc-

tion algorithm starts with an initial estimate s0 = 0 = [0, 0, ...0]T . In each step of

the iterative algorithm, successive D-projections are performed onto the hyper-

planes Hi, i = 1, 2, ...,M with respect to a cost function g(s), that are defined as

in (2.3).
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Figure 2.1: Modified entropy functional g(v) (+), |v| (◦) that is used in the ℓ1
norm, and the Euclidean cost function v2 (−) that is used in the ℓ2 norm

.

The D-projection onto a closed and convex set is a generalized version of the

orthogonal projection onto a convex set [13]. Let so be arbitrary vector in R
N .

Its’ D-projection sp onto a closed convex set C with respect to a cost functional

g(s) is defined as follows

sp = arg min
s∈C

D(s, so) such that θ.s = y (2.8)

where

D(s, so) = g(s)− g(so)− < ▽g(so), s− so) > (2.9)

and D is the distance function related with the convex cost function g(.), and ▽

is the gradient operator. In CS problems, we haveM hyperplanes Hi : θi.s = yi

for i = 1, 2, ...,M . For each hyperplane Hi, the D-projection (2.8) is equivalent

to

▽ g(sp) = ▽g(so) + λθi (2.10)

θi.sp = yi (2.11)

where λ is the Lagrange multiplier. As pointed out above, the D-projection is

a generalization of the orthogonal projection. When the cost functional is the
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Euclidean cost functional g(s) =
∑

n s[n]
2 the distance D(s1, s2) becomes the

ℓ2 norm of difference vector (s1 − s2), and the D-projection simply becomes the

well-known orthogonal projection onto a hyperplane.

The orthogonal projection of an arbitrary vector so = [so[1], so[2], ..., so[N ]]

onto the hyperplane Hi is given by

sp[n] = so[n] + λθi[n], n = 1, 2, ..., N (2.12)

where θi(n) is the n-th entry of the vector θi and the Lagrange multiplier λ is

given by,

λ =
yi −

∑N
n=1 so[n]θi[n]

∑N
n=1 θi

2[n]
. (2.13)

When the cost functional is the entropy functional g(s) =
∑

n s(n) ln(s(n)), the

D-projection onto the hyperplane Hi leads to the following equations

sp[n] = so[n].e
(λ.θi[n]), n = 1, 2, ..., N (2.14)

where the Lagrange multiplier λ is obtained by inserting (2.14) into the hyper-

plane equation given in (2.2); therefore, the D-projection sp must be on the

hyperplane Hi. The previous set of equations are used in signal reconstruction

from Fourier Transform samples [89] and the tomographic reconstruction prob-

lem [84]. However, the entropy functional is defined only for positive real numbers.

As mentioned earlier, the original entropy function can be extended to negative

real numbers by modifying the original entropy function as in (2.5), and (2.6).

The modified entropy functional ge(s) based version of the optimization prob-

lem given in (2.3) can be defined as

min
s

ge(s),

subject to θ.s = y .
(2.15)

The continuous cost functional ge(s) satisfies the following conditions,

(i) ∂ge(0)
∂si

= 0, i = 1, 2, ..., N and

(ii) ge is strictly convex everywhere and continuously differentiable.
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On the other hand, the ℓ1 norm is not a continuously differentiable function;

therefore, non-differentiable minimization techniques such as sub-gradient meth-

ods [95] should be used for solving ℓ1 based optimization problems. On the other

hand, the ℓ1 norm can be well approximated by the modified entropy functional

as shown in Figure 2.1. Another way of approximating the ℓ1 penalty function

using an entropic functional is available in [96].

To obtain the D-projection of so onto a hyperplane Hi with respect to the en-

tropic cost functional (2.6), we need to minimize the generalized distance D(s, so)

between s0 and the hyperplane Hi:

D(s, so) = ge(s)− ge(so)− < ▽ge(so), s− so > (2.16)

with the condition that θis = yi. Using (2.10), entries of the projection vector sp

can be obtained as follows

sgn(sp(n)).

[

ln(|sp(n)|+
1

e
)

]

= sgn(so(n)).

[

ln(|so(n)|+
1

e
)

]

+ λθi[n], n = 1, . . . , N

(2.17)

where λ is the Lagrange multiplier, which can be obtained from θis = yi. The

D-projection vector sp satisfies the set of equations (2.17), and the hyperplane

equation Hi : θi.s = yi.

In Section 4.2, the entropic projection operator based iterative algorithm is

utilized in CS reconstruction problem. First the ℓ1 norm in (1.6) is replaced

by the modified entropy function based norm. Using a convex function such

as the modified entropy function, enables us to solve CS problem using the D-

projection based iterative algorithms. The CS problem can be divided into M

subproblems defined by the rows of the measurement matrix as given in (2.3).

Interval convex programming techniques enables us to solve the large CS problem

by solving the subproblems using the row-iteration methods [12]. The details, as

well as numerical results of the modified entropy functional based iterative CS

reconstruction method are presented in Section 4.2.

In Chapter 6, an entropic projection based adaptive filtering algorithm for

multi-node networks is presented. The multi-node network estimation problem

defined in [4] is composed of two main parts namely as; adaptation and combina-

tion. Typically ℓ2 cost function based projection (orthogonal projection) operator
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is used in the adaptation stage of this algorithm. In this thesis, the adaptation

stage is replaced with the entropy projection. As the modified entropy functional

estimates the ℓ1 norm, it results in sparse projections. Therefore, the resulting

projection is more robust than the orthogonal projection against heavy-tailed

noise such as ε-contaminated Gaussian noise. In Section 6.2, details of the pro-

posed algorithm as well as experimental results are presented. In Section 6.3, this

time the combination stage is replaced by a TV or FV based scheme. The new

scheme uses high-pass filtering based constraints while combining the information

from neighboring nodes. It is also possible to use the new combination scheme

together with new adaptation scheme introduced in Section 6.2. The proposed

adaptation and combination constraints are closed and convex sets, therefore, the

new diffusion adaptation algorithm can be solved in an iterative manner. The

details of the new diffusion adaptation algorithm as well as the simulations re-

sults with different node topologies under white Gaussian and ε-contaminated

Gaussian noise models are given in Section 6.3.
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Chapter 3

FILTERED VARIATION

Total Variation (TV) based solutions are quite popular for inverse problems such

as denoising and signal reconstruction [3, 16, 69, 71–74, 97]. In discrete TV func-

tional, the difference between neighboring samples are computed and the ℓ1 or

ℓ2-norm of the difference vector is minimized. Hence, the TV method inherently

assumes that the signal (or image) is a low-pass signal and tries to minimize

the high-pass energy. Instead of computing just the one-neighborhood difference

between the samples, it can be possible to filter the signal using an appropriate

high-pass filter and minimize the ℓ1 or ℓ2 energy of the output signal. Further-

more, it is also possible to use diagonal or even custom designed directional high-

pass filters in image and video processing applications according to the needs of

the user or the characteristics of the signal.

As pointed out in Chapter 1, for a 1-D signal x of length N, the discretized

TV functional of x is defined as,

||x||TV =
N
∑

n=1

√

(x[n]− x[n + 1])2 (3.1)

where a discrete-gradient of the signal is the key component of the TV functional.

We note that the discrete gradient operation v[n] = x[n] − x[n + 1] in (3.1) is

a rough high-pass filtered version of x. This filter is the high-pass filter used in

Haar wavelet transform. Therefore, the relation between the signals x and v can
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be represented via convolution denoted by the operator ∗ as follows:

v[n] = h[n] ∗ x[n] (3.2)

where h[n] = {−1, 1} is the impulse response of the Haar high-pass filter. In

the DFT domain the same relationship can be represented by a multiplication

operation as follows:

V [k] = H [k]X [k], k = 1, 2, ..., N. (3.3)

provided that the DFT size N is larger than the length of convolution.

In (3.3), X [k], H [k], V [k] are the N -point DFT of the desired signal x[n],

high-pass filter h[n] and the output v[n], respectively. The TV cost function is

equivalent to filtering the signal with a Haar high-pass filter and computing the ℓ1

or ℓ2 energy of the filtered output signal corresponding to anisotropic or isotropic

cases, respectively.

The Haar filter has an ideal normalized angular cut-off frequency of π
2
. It

is possible to apply other high-pass filters and compute the output energy or it

is possible to use the Parseval’s relation and other Fourier domain relations to

impose sparsity conditions on the desired signal. It is well-known [98] that:

√

∑

n

|v[n]|2 =

√

∑

k

1

N
|V [k]|2 ≤ max

k
|V [k]| ≤

∑

n

|v[n]| . (3.4)

for an arbitrary discrete-time signal v[n]. In Section 3.1, based on the above rela-

tions, both time (space) and frequency domain FV constraints, which correspond

to closed and convex sets for the CS problem are defined.

FV framework has two major advantages over the TV framework. First of all,

if the user has prior knowledge about the frequency content of the signal, it be-

comes possible to design custom filters for that specific band. In some application

areas such as biomedical, satellite, forensics etc . . . image processing applications,

a pool of similar images exists. From this pool, one can find a model of the high

frequency information or, more generally, the structure of the signal. Using this

information, one can design custom FV constraints appropriate for the structure

of the signal. For example, if a set of images contain specific texture character-

istics, e.g.the fingerprint image in Figure 3.1, FV constraints that preserve this
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texture information can be designed. Or for practical signals, one can design

a high-pass filter in Fourier domain with exponentially decaying coefficients in

the transition band of the filter as given in Figure 3.2. Many practical signals

typically have exponentially decaying Fourier domain responses. It is possible to

obtain good reconstruction/denoising results by restricting the signal with such

FV constraint. Another FV strategy that can be used, if the user does not have

any information about the signal content, is as follows. The user may individually

apply high-pass-filters (HPF) from a set of filters with different pass-bands and

directionalities. Then, according to the output of the flters, he/she can choose a

subset of these HPFs and use them as a FV constraints. By this way FV based

approach may adapt itself better to the signal content.

Figure 3.1: It is possible to design special high-pass filters according to the struc-
ture of the data. The black and white stripes (texture) in the fingerprint image
corresponds to a specific band in the Fourier domain. A high pass filter that
corresponds to this band can be designed and used as a FV constraint.

.

The filtered output in transform domain V [k] = H [k]X [k] is basically specified

by the filter H, which can be selected according to a given bandwidth specified

by the user. In 2-D or higher dimensions, one is not restricted to horizontal or

vertical high-pass filters. It is also possible to use directional high-pass filters.

Moreover, the user is not restricted with just filtering type of constraints but,

any type of convex constraint set becomes applicable to the signal through the

FV scheme. The FV constraints are iteratively applied to the signal of interest

in a cyclic manner. The convergence of the iterative algorithm is guaranteed by
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Figure 3.2: An example high pass filter with exponentially decaying transition
band.

.

the POCS theorem because, our constraints are convex [17].

As mentioned before, it is also possible to define constraint sets on other

transform domain representations, such as wavelets, but in this thesis, we focus

on DFT and DCT domain.

3.1 Filtered Variation Algorithm and Trans-

form Domain Constraints

In this section, we list seven possible closed and convex constraints that can be

used in inverse problems. Each constraint qualifies different properties of the

estimated signal such as; ℓ1 or ℓ2 energy of the high frequency band of the signal,

local variations in the signal, the mean of the signal, the bit depth of the sample,

and the sample value locality. All the constraints can be used at the same time,

or any combination of these can be used together depending on the nature of the

signal (or image) and problem type. The constraints defined below will be used

for signal reconstruction in Section 4.1 and for denoising in Section 5.2.
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3.1.1 Constraint-I: ℓ1 FV Bound

The first constraint is based on the ℓ1 energy of high frequency coefficients

C1 =

{

x :
N−1
∑

k=0

|H [k]X [k]| ≤ ε1

}

. (3.5)

It is possible to perform orthogonal projections onto this set in Discrete Time

domain as described in [87]. Since, the DFT is a complex transform, it is easier

to work with a real transform such as DCT or DHT. In this case the boundary

hyperplanes of the region specified by the constraint set are real. The projection

operation is essentially equivalent to making orthogonal projections onto hyper-

planes forming the boundary, and it is similar to projection onto an ℓ1 ball but

it is on the transform domain and only high-frequency coefficients are updated.

Since we perform projections onto an ℓ1 ball type region, the solution turns out

to be sparse.

3.1.2 Constraint-II: Time and Space Domain Local Vari-

ational Bounds

The second constraint is based on the change in intensity between the consecutive

samples of a signal (pixels of the image). In real-life, there is strong correlations

between the samples of discrete-time signals (or images), and there is very little

correlation between different parts of the signals (or images). Therefore, it is

possible to remove the summation operator in the TV or the FV and consider

regional TV or FV constraints on the signal. This leads to a high-pass constraint

set for each sample of the signal (or pixel of the image)

C2,n =

{

x :

∣

∣

∣

∣

∣

l
∑

i=−l

h[i]x[n − i]

∣

∣

∣

∣

∣

≤ P

}

, (3.6)

where h[i] is a high-pass filter with support length 2l+ 1 and P is a user defined

bound. Selecting the P value, effects the smoothness level of the target signal
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significantly. Projection onto hyperslabs C2,n do not correspond to low-pass fil-

tering, because projections are essentially non-linear operations. If the current

iterate does not satisfy the bound, it is projected onto the hyperslab given in

(3.6).

If the user does not have a clear knowledge about the signal content, a very

large bound (P = 128) for the high-pass filter h = {−1
4
, 1
2
, −1

4
} is selected to avoid

distorting the high frequency parts of the signal. When there is an impulse within

the analysis window of the filter, the filter output will be high and the samples

within that window are modified by the projection. For example, the C2,n family

of sets turn out to be useful for Laplacian noise. In image processing applications,

it is also possible to apply filters in vertical and diagonal directions depending of

the nature of the original image.

3.1.3 Constraint-III: Bound on High Frequency Energy

The following anisotropic constraint on high-frequency energy of the signal x is

a closed and convex set:

C3a =

{

x :

N−k0
∑

k=k0

|X [k]|2 ≤ ε3a

}

(3.7)

where ε3a is an upper bound. This corresponds to filtering the signal x with a

high-pass filter whose cut-off frequency index is k0 in the DFT domain

H [k] =

{

0, for k < k0 or k > N − k0

1, for k0 ≤ k ≤ N − k0
(3.8)

where N is the size of the DFT. Although this filter suffers from the Gibbs phe-

nomenon in time-domain, it is possible to use it in signal processing applications

such as denoising. The index k0 is equal to N
4
for the normalized angular cut-off

frequency of π
2
, but any 0 < k0 <

N
2
can be selected for a desired smoothness level.

The set given in Eq. (3.7) is a convex set and it is easy to perform orthogonal

projections onto this set. Let so[n] be an arbitrary signal and S0[k] be its DFT.
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Sp[k] of the projection sp[n] is given by

Sp[k]=























√

ε
εo
S0[k] , if

N−k0
∑

k=k0

|S0[k]|
2 ≥ ε, ko≤k≤N − ko

S0[k], otherwise,

(3.9)

where

N−k0
∑

k=k0

|So[k]|
2 = εo.

We can also use a DCT domain high-pass energy constraint on the desired

signal using the following set

C3b =

{

x :
N−1
∑

k=k0

(XDCT [k])
2 ≤ ε3b

}

, (3.10)

which is also a convex set. In (3.10), XDCT represents the DCT of the signal x.

It is straightforward to make orthogonal projections onto the DCT domain set

C3b as in Equation (3.9).

3.1.4 Constraint-IV: User Designed High-pass Filter

In this case, instead of using a specific cut-off frequency, the frequency response

of a given high-pass filter is used as

C4 =

{

x :

N−1
∑

k=0

|H [k]X [k]|2 ≤ ε4

}

. (3.11)

The set C4 is also a closed and convex set. Orthogonal projection onto this set

is not as easy as Condition-I, because the set is a closed ellipsoid. It can be

implemented using numerical methods, [99, 100].

3.1.5 Constraint-V: The Mean Constraint

The fifth constraint is actually proposed in [3]. It is based on the desired mean

of the target signal. Typically this information can be estimated from a pool of

33



similar types of images (e.g. satellite images, images of hand-writing, faces etc.)

A constraint based on the mean information can be defined as follows

C5 =

{

x :

N
∑

n=1

x[n]

N
= µx

}

(3.12)

where N is the number of the pixels in the image and µx is the mean of the

original image.

3.1.6 Constraint-VI: Image bit-depth constraint

In general, the users know the color (bit) depth of the original image. Due to

this fact, it is possible to define a constraint on the bit depth of the reconstructed

image as follows:
C6

{

x : 0 ≤ x[i, j] ≤ (2M − 1)
}

(3.13)

where M is the number of the bit planes used in the original representation.

This constraint is also proposed in [3]. This constraint is not restricted to image

processing applications. The user may know the signal bit-depth for any other

type of signal. Therefore, the extension of this constraint to other type of signals

is trivial. The projection onto this set is simple thresholding operation, where

the upper and lower thresholds are determined by the upper and lower bounds

given in 3.13. A signal sample exceeding the thresholds is limited to the closest

bounding values.

3.1.7 Constraint-VI: Sample Value Locality Constraint

The following constraint originates from the regularization term in the optimiza-

tion type formulations of both the denoising and the compressed sensing prob-

lems. In both the compressed sensing and the signal denoising problems, the

samples that are taken from the signal are reliable to some extend. Therefore,

the solution should be sought in the proximity of the samples. The coverage of

this proximity heavily depends on the noise of the samples. In the original signal

domain, this constraint can be defined as

C7 {x : |x̃[n]− y[n]| < δn} , (3.14)
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where x[n] and y[n] are the samples of the signal x, and the noisy measurements

y from the signal, respectively. This formulation is convenient for denoising

problems. In the compressed sensing applications, the proposed constraint can

be applied on the compressed measurements as

C7,CS {x : |Ax[n]− y[n]| < δn} , (3.15)

where A is the measurement matrix and y are the compressed measurements,

that are taken from the original signal x. The parameter δn heavily depends on

the noise model, e.g. if the signal is contaminated by white Gaussian noise with

variance σ, then choosing δn ∈ [σ, 2σ] is a reasonable assumption.

In Section 4.1, an algorithm for estimating regularly sampled version of a

signal from its irregularly sampled version is presented. Most typically, sinc

interpolation is used for solving this problem. Here in this thesis, a filtered

variation based approach is presented. The irregularly sampled signal is projected

onto alternating convex FV constraints iteratively and the regularly sampled

version of the signal is estimated. As another FV application, in Section 5.2, an

FV based signal denoising algorithm that uses constraints C1-C6 is presented.
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Chapter 4

SIGNAL RECONSTRUCTION

The problem of reconstructing a signal from its uniform samples has been well

studied in the literature. However, there is a variety of scenarios in the literature,

where uniforms samples from a signal can not be collected. For examples, in CT

and MRI, only non-uniform frequency domain samples are available [101]. If the

average sampling rate is above twice the bandwidth of the signal, the signal can

be reconstructed from its nonuniform samples [101]. The theory on nonuniform

sampling and reconstruction was well studied by Yao and Thomas in [102], and

Yen [103]. Yen considered to spread the samples taken from a signal in an ar-

bitrarily nonuniform manner, as well as taking groups of uniform samples from

a signal in a periodic manner. In [104], Jerri presented a review of nonuniform

sampling schemes in the Literature, as well as the related reconstruction algo-

rithms.

However, none of the above papers introduces a practical reconstruction

method that can be implemented on a computer [101]. In [105], and [106] Finite-

impulse filtering (FIR) based approaches are introduced for non-periodic and pe-

riodic signals, respectively. In [107], and [108], iterative reconstruction methods

for reconstructing band-limited signals from their nonuniform samples have been

presented. In [109], a non-iterative block based method is proposed. However,

these methods are computationally complex and works only for a special set of

nonuniform samples. Recently, in [101], Margolis and Eldar derived closed form

36



algorithms for reconstructing periodic band-limited signals from nonuniform sam-

ples. Another recent research direction in nonuniform sampling is compressive

sensing.

In this chapter, two different signal reconstruction algorithms are presented.

In the first algorithm, a signal is reconstructed from its irregularly sampled version

through low-pass filtering. The proposed method works like Filtered Variation

constraints in the sense that the high frequency part of the signal spectrum is

bounded during the reconstruction process. In the second algorithm, a CS re-

construction method that utilizes entropy projection and row-action methods is

presented.

4.1 Signal Reconstruction from Irregular Sam-

ples

Let us assume that samples xc(ti), i = 0, 1, 2, ..., L − 1, of a continuous time-

domain signal xc(t) are available. These samples may not be on an uniform

sampling grid. Let us define xd[n] = xc(nTs) as the uniformly sampled version of

this signal. The sampling period Ts is assumed to be sufficiently small (below the

Nyquist period) for the signal xc(t). In a typical discrete-time filtering problem,

one do have xd[n] or its noisy version and apply a discrete-time low-pass filter

to the uniformly sampled signal xd[n]. However, xd[n] is not available in this

problem. Only nonuniformly sampled data xc(ti), i = 0, 1, 2, ...L−1 are available

in this problem.

Our goal is to low-pass filter the nonuniformly sampled data xc(ti) according

to a given cut-off frequency. One can try to interpolate available samples to

the regular grid and apply a discrete-time filter to the data. However, this will

amplify the noise because the available samples may be corrupted by noise [110].

In fact, only noisy samples are available in some problems [111]

The proposed filtering algorithm is essentially a variant of the well-known
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Papoulis - Gerchberg interpolation method [17,70,85,112–115] and the FIR filter

design method presented in [116]. The proposed solution is based on Projections

onto Convex Sets framework (POCS). In this approach, specifications in time and

frequency domain are formulated as convex sets and a signal in the intersection

of constraint sets is defined as the solution, which can be obtained in an iterative

manner. In each iteration, the fast Fourier Transform algorithm (FFT) is used

to go back and forth between the time and frequency domains.

In many signal reconstruction and band-limited interpolation problems [17,70,

112, 114] Fourier domain information is represented using a set, which is defined

as follows

Cp = {x : X(ejw) = 0 for wc ≤ w ≤ π}, (4.1)

where X(ejw) is the discrete-time Fourier Transform (DTFT) of the discrete-time

signal x[n] and wc is the band-limitedness boundary or the desired normalized

angular low-pass cut-off frequency [17,112,114]. This constraint is similar to the

“C1” filtered variation constraint defined in (3.5), which uses an ideal high-pass

filter with a specific cut-off frequency and ε1 = 0. As in the filtered variation

method, this condition is imposed on a given signal xo[n] by orthogonal projec-

tion onto the set Cp. The projection xp[n] is obtained by simply imposing the

frequency domain constraint on the signals

Xp(e
jw) =

{

Xo(e
jw) for 0 ≤ w ≤ wc

0 for w > wc ,
(4.2)

where Xo(e
jw) and Xp(e

jw) are the DTFTs of xo and xp, respectively. Mem-

bers of the set Cp are infinite extent signals so the FFT size should be large

during the implementation of the projection onto the set Cp. However, strict

band-limitedness constraints as in Cp may induce ringing artifacts due to Gibbs

phenomenon.

The band-limitedness constraint can be relaxed by allowing the signal to have

some high-frequency components according to the tolerance parameter δs. The

use of the stop-band and the transition regions eliminates ringing artifacts due to

Gibbs phenomenon. In this respect, the proposed approach is different from the

Papoulis-Gerchberg type method, which uses strict band-limitedness condition.
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This new constraint corresponding to the stop-band condition in Fourier do-

main is defined as follows

Cs = {x : |X(ejw)| ≤ δs for ws ≤ w ≤ π} (4.3)

where the stop-band frequency ws > wc. The set Cs is also a convex set [17,117]

and this condition can be imposed on iterates during iterative filtering. A member

xg of the set Cs corresponding to a given signal xo[n] can be defined as follows

Xg(e
jw) =















Xo(e
jw) for 0 < w < ws

Xo(e
jw) for |Xo(e

jw)| ≤ δs, w ≥ ws

δse
jφo(w) for |Xo(e

jw)| ≥ δs, w ≥ ws

(4.4)

where φo(w) is the phase of Xo(e
jw). Clearly, Xg(e

jw) is in the set Cs. In our

implementation the set Cs plays the key role rather than the set Cp because

almost all signals that we encounter in practice are not perfect band-limited

signals. Most signals have high-frequency content. The frequency band (wc, ws)

corresponds to the transition band used in ordinary discrete-time filter design.

This relaxed version of the band-limitedness constraint in (4.4) also works like

an FV constraints in the sense that it controls the behavior of the reconstructed

signal in a specific band (e.g. high pass frequencies).

This constraint is also a variant of the set C1 defined in (3.5). Instead of

putting a bound on the ℓ1 energy of the highpass filtered version of the signal as

in C1, the Cs limits the behavior of the transform domain coefficients in the high-

pass band individually. On the other hand, it is also possible to replace Cs with

C1. As C1 corresponds to projection onto ℓ1 ball, it results in sparse projections

with few non-zero transform domain coefficients in the high-pass band. The

corresponding C1 type constraint can be defined as

C̃1 =

{

x :
N−1
∑

k=0

|H [k]X [k]| ≤ ε1

}

, (4.5)

H [k] =

{

1, k < kc or k > N − kc

0, kc ≤ k ≤ N − kc
, (4.6)

where kc =
Nwc

2π
and ε1 = (N − kc)δs in our experiments. It is possible to use any

ε1 > 0 depending on the desired smoothness level of the regularly sampled signal.
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Since, ℓ1 projection is used while implementing this constraint, it is named as ℓ1

projection based interpolation throughout the experiments.

It is also possible to use C3a defined in (3.7), which represents bound on high

frequency energy constraint defined in (3.7) to restrict the high-pass components

of the restored signal. In this case, the stop band energy parameter is choosen as

ε3a = (N − kc)δs. This constraints corrensponds finding the ℓ2 projection of the

high frequency components of the signal onto the set defined in (3.7). Therefore,

it is refered as ℓ2 based interpolation throughout the experiments.

It is also possible to replace the ℓ2 projection operation with entropic pro-

jection operator. ℓ1, and entropic projection based constraints results in sparse

reconstructions [21,36]. Therefore, they may induce ringing artifacts due to Gibbs

phenomenon. Since the ℓ2 projection based constraints, limits all the stop-band

coefficients in an evenly manner, it produces much smooth reconstructions. On

the other hand, ℓ1, and entropic projection based algorithms are more robust

against noise, since they produce sparse projections. In the experimental re-

sults section of this chapter, these claims will be illustrated through numerical

examples.

Besides the frequency domain constraints defined by sets (4.1), and (4.3),

another set of constraints should be defined in time domain, so that it would be

possible to realize the aformentioned Papoulis-Gerchberg type of iterations. As

pointed out above a sampling period, which is smaller than the Nyquist period

is used. Let’s assume that 0, Ts, 2Ts, ..., (N − 1)Ts is a dense grid covering ti, i =

0, 1, 2, ..., L − 1 and let’s also assume that all ti < ti+1 and ti ≥ 0 and tL−1 ≤

(N − 1)Ts without loss of generality.

The set describing the time-domain information is defined using the regular

sampling grid 0, Ts, 2Ts, ..., (N−1)Ts. The sample at t = ti is assumed to be close

to nTs. The upper and lower bounds that are imposed on x[n] as follows:

xc(ti)− εi ≤ x[n] ≤ xc(ti) + εi, (4.7)

and the corresponding time-domain set is defined as

Ci = {x : xc(ti)− εi ≤ x[n] ≤ xc(ti) + εi}, (4.8)
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where the time-domain bound parameter ei can be either selected as a constant

value or as an α-percent of xc(ti) in a practical implementation. Although the

signal value at nTs on the regular grid is not known, it should be close to the

sample value xc(ti) due to the low-pass nature of the desired signal. Therefore,

this information is modelled by imposing upper and lower bounds on the discrete-

time signal in sets Ci, i = 0, 1, 2, ..., L−1. Furthermore samples may be corrupted

by noise and upper and lower bounds on sample values provide robustness against

noise. If there are two signal samples close to x[n] the grid size can be increased,

i.e., the sampling period can be reduced so that there is one x[n] corresponding

to each xc(ti). Ci can also be defined as

Ci = {x : |xc(ti)− x[n]| ≤ εi} . (4.9)

This formulation of Ci constraint is actually very similar to the FV constraint

“C2: Time Domain Local Variational Bound” given in Section (3.1.2).

Other time-domain constraints that can be used in an iterative algorithm

include the positivity constraint x[n] ≥ 0 (similar to “C6: Bit Depth Constraint”

in (3.13)), if the signal is nonnegative, and the finite energy set

CE = {x : ||x||2 ≤ E}, (4.10)

which is introduced in [17] for band-limited interpolation problems to provide

robustness against noise. CE is a C3 type of constraint defined as in (3.7), and

(3.10) but in time domain instead of transform domain. Projection on CE can be

calculated as in (3.9).

The iterative filtering algorithm consists of going back and forth between

time and frequency domains and imposing the time and frequency constraints on

iterates. The algorithm starts with an arbitrary initial signal xo[n]. Then it is

projected onto sets Ci by using the time domain constraints defined in (4.7) and

obtain the first iterate x1[n]. Next, the DTFT X1 of time domain signal x1[n] is

computed and the frequency domain constraint defined in Eq. (4.4) are imposed

on X1 to obtain X2.

Then compute the inverse-DTFT of X2 is computed to obtain x2. At this

stage other time domain constrains such as positivity and finite energy can be
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also imposed on x2, if the signal is known to be a nonnegative signal. Once x2 is

obtained it probably violates the time domain constraints defined by inequalities

(4.7). Therefore x3 is obtained by imposing the constraints on x2. The iterates

defined in this manner converge to a signal in the intersection of the time-domain

set Ci and the frequency domain set Cs, if they intersect. Eventually a low-pass

filtered version of the signal xc(t) on the regular grid defined by 0, Ts, 2Ts, ..., (N−

1)Ts is found. If the intersection of the sets Ci and Cs is empty then either the

bounds ei should be increased or the the cut-off frequency ws should be increased.

The iterative algorithm is globally convergent regardless of the initial starting

signal, xo[n]. The proof of convergence is due to the projections onto convex sets

(POCS) theorem [17], [70], because the sets Cs, Ci, CE are all convex sets in l2.

Successive orthogonal projections onto these sets lead to a solution, which is in

the intersection of Cs, Ci, and CE . Papoulis-Gerchberg type iterations jumping

back and forth between time and frequency domains converge in a relatively slow

manner. Convergence speed can be increased using the nonorthogonal projection

methods such as the ones described in [17, 70, 118].

The original signal that we would like to reconstruct from its irregular samples

may not be covered by the time and Fourier domain constraint sets that we defined

in 4.1-4.10. Obviously, in this case the perfect reconstruction of the original

signal by our algorithm is not possible. However, if sufficiently many informative

samples are taken from the signal, it is possible for the algorithm to approximate

the signal effectively. Here, informative samples refers to critical points in the

signal such as the peaks and the sharp edge point of the HeaviSine signal. This

condition needs to be satisfied even if the original signal is included in the Fourier

and time domain constraint sets. The algorithm tries to fit a smooth model with

some high frequency components to the irregular samples. Therefore, it aims to

find the smoothest signal that fits to the Fourier and time domain constraints.
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4.1.1 Experimental Results

The proposed frequency and time domain constraints are tested with an irreg-

ularly sampled version of the length-1024 noiseless Heavisine signal in Figures

4.3, 4.4, and 4.6 and its noisy version in Figures 4.1, 4.2, 4.5, and 4.7. Due to

the edges, the original Heavisine signal has high-frequency content. Therefore,

the strict band-limited interpolation employing the set Cp will not produce sat-

isfactory results for this signal as demonstrated in [110]. Moreover, when the

irregularly samples signal is noisy, spline interpolation based algorithms will not

produce good results either [110].

In all the experiments that are conducted, the time domain constraint Ci

that is defined in (4.9) with different εi parameters is used as the time domain

constraint. The values of the time domain parameters εi that are used in the

different experiments can be found in Table 4.1. As the frequency domain con-

straints, 6 different constraints that are introduced in Section 4.1 are used. The

parameters related to these constraints are also given in Table 4.1. These different

interpolation schemes are also compared against each other in this section.

The experiments can be divided into two main groups: noiseless (Simula-

tions 3,4,6) and noisy (Simulations 1,2,5,7). For the noiseless case, four differ-

ent frequency domain constraints that corresponds to four different interpolation

schemes are used. These interpolation schemes and related constraints are (i)

strict band-limited interpolation (SBL), which uses Cp in (4.1), (ii) relaxed band-

limited interpolation, which uses Cs in (4.3), (iii) ℓ1 based interpolation, which

uses C̃1 in (4.6), and (iv) ℓ2 based interpolation, which uses C3a in (3.7). In case

of restoration from noisy samples, two more interpolation methods are added to

the comparisons. These methods are entropic projection based recovery in (4.6),

and cubic spline interpolation. These interpolation schemes are compared against

each other using the SNR metric, which is defined as

20log10

(

||x||2
||x− xrec||2

)

, (4.11)

where x is the original signal and xrec is the signal reconstructed from irregular

samples.
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In the first set of experiments, the original noiseless Heavisine signal is ir-

regularly sampled at a given number of sampling points and the underlying

continuous-time signal at 1024 uniformly selected instances, i.e., x[n], n =

0, 1, 2, ..., 1023 is estimated. The simulation parameters used in these experi-

ments are given in respective columns of Table 4.1. In this case, the time domain

constraint parameter is fixed to εi = 0, because all the samples are known to be

taken from the original signal, hence, they are correct. According to the results

of Simulations 3, and 6, which are presented in Figures 4.3, and 4.6, respectively,

it is possible to say that increasing the number of samples taken from the original

signal also increases the reconstruction quality.

As mentioned before, if the high-pass band is suppressed too much, oscilla-

tory behavior around the edge locations in the signal occurs. Therefore, strict

band-limited (SBL) interpolation gives the worst results among the all the other

interpolations methods used in the simulations. ℓ2 based, and filtered interpola-

tions achieved the best results for different stop-band parameters δs. However, as

shown in Figures 4.3, and 4.4, Cs based interpolation seems to be more sensitive to

changes in stop-band parameter. Contrary to ℓ2 based, and filtered interpolations,

ℓ1 based interpolation produces sparse results. It keeps few large high-frequency

components and sets the rest of the coefficients to zero. It works similar to strict

band-limited interpolation and provides average performance. Spline interpola-

tion results are not shown in noiseless test. However it is important to note

that for the reconstruction of the Heavisine signal, spline interpolation achieves

slightly better results than ℓ2 based interpolation. Entropy projection based inter-

polation also produces sparse solutions in frequency domain as the ℓ1 projection

based interpolation method. Therefore, its performance is similar to ℓ1 based

interpolation.

It is important to note that, the signals that are restored using the ℓ2 based,

and filtered interpolation methods are similar to the signal obtained using the

wavelet domain methods described in [110].

As a last remark, the Fourier domain coefficients corresponding to the high

frequency part of the original Heavisine signal are larger than the δc values in
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Table 4.1. Moreover, the high frequency energy of the Heavisine signal exceeds

the levels defined by ε1 parameters. In other words, the original Heavisine signal

is not in any of the sets that are defined by the parameters in Table 4.1. There-

fore the perfect reconstruction of the original signal by these parameter sets is

not possible. As another test we increased the frequency domain bounds δc such

that the constraints sets covered the Heavisine signal and then execute the recon-

struction algorithm. In this case the outcome of the algorithm contains unwanted

oscillations.

In the second set of experiments, 32, 128, and 256 sample points from the noisy

HeaviSine signal are randomly picked and the underlying discrete-time signal at

1024 uniformly selected instances, i.e., x[n], n = 0, 1, 2, ..., 1023 is estimated. The

available signal samples are corrupted by white Gaussian noise with a standard

deviation of either σ = 0.2 or σ = 0.5 as in [110]. The reconstruction results

obtained using the proposed interpolation schemes are comparable to the wavelet

domain interpolation method described in [110]. As in the noiseless case, it is

also possible to restore the main features of Donoho’s HeaviSine signal.

The time domain constraint parameter εi is selected according to the signal

noise content. Since measurement error has a standard deviation of σ, the εi

parameter is set to the same value. So the restored signal values at the sampling

locations has the flexibility to move around the sampled signal value. This type

of a constraint corresponds to thresholding.

Another set of experiments is conducted with the signals in Figure 4.8. In this

experiment 64 or 128 random samples are taken from the noisy version signals

and the signal is reconstructed from these irregular measurements. The standard

deviation of the noise on the signal is given at the third column of Table 4.2. The

results obtained by using different constraints are presented in Table 4.2.

As in the case of noiseless experiments, when the number of samples taken

from the signal increases, the SNR between the restored and the original signal

also increases. Different from the noiseless case, this time the best restoration

results are achieved either by ℓ1 or entropy projection based interpolation meth-

ods. It is well known in signal literature that, ℓ1 projection has better denoising
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Table 4.1: Simulation parameters used in the tests.

Simulation 1 2 3 4 5 6 7
Figure 4.1 4.2 4.3 4.4 4.5 4.6 4.7
σ 0.2 0.5 0 0 0.2 0 0.2
εi 0.2 0.5 0 0 0.2 0 0.2
δs 0.5 0.5 0.5 0.3 0.3 0.3 0.2
kc 31 31 31 31 31 31 21

Number of Samples 32 32 32 32 128 128 256

performance than the ℓ2 projection [119–121]. As mentioned before, ℓ1 norm pro-

motes sparsity, and it cleans the noise component at the high pass band of the

restored signal more effectively. Likewise, since entropy functional based projec-

tion estimates ℓ1 projection, it also results in sparse solutions, it is also robust

against noise.

As mentioned in [110], spline interpolation is very sensitive to noise. There-

fore, it turns out the worst reconstruction results among all the interpolation

schemes we used.

Convergence of the iterative algorithm can be proved using the projections

onto convex sets theorem [17, 70], because the set Cs and sets Ci are closed and

convex sets. In Figure 4.9, restored signals after 1, 10, 20 and 58 iteration rounds

are shown.

A two-dimensional (2D) example is also provided in Figures 4.10, 4.11 and

4.12. The original terrain model given in Figure 4.10 consists of 225 × 425 sam-

ple points. As a first example, one-fourth of the samples of the original signal

are available in a random manner. The 2D signal shown in Figure 4.11 is re-

constructed using the cut-off frequency wc = π
4
, δs = 0.03, and ei = 0.01. In

the second example, one-eighth of the samples of the original signal are available

in a random manner. The reconstructed signal using the parameters wc = π
8
,

δs = 0.03, and ei = 0.01 are shown in Figure 4.12. Reconstruction results, which

are given in Figures 4.11 and 4.12 are like low-pass filtered versions of the original

2D signal in a dense 2D grid.
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Table 4.2: Reconstruction results for signals in Figure 4.8. All the SNR results
are given in dB.

Number Noise Relaxed ℓ1 ℓ2 Strict

Signal of standard band-limited Projection Projection band-limited Spline

No Samples deviation interpolation reconstruction reconstruction interpolation interpolation

(σ) (in dB) (in dB) (in dB) (in dB) (in dB)

1 64 0.01 25.61 25.27 22.16 24.02 13.21
1 128 0.01 27.43 27.49 27.36 24.77 17.63
1 64 0.1 14.31 14.14 13.2 13 2.11
1 128 0.1 16.16 14.28 14.02 11.53 2.41
2 64 0.01 13.45 12.53 12.93 12.31 11.83
2 128 0.01 18.34 18.24 18.54 17.19 17.53
2 64 0.1 12.25 12.44 11.8 11.51 4.37
2 128 0.1 15.82 15.51 13.96 11.63 4.74
3 64 0.01 14.97 15.29 15.03 14.54 15.45
3 128 0.01 16.23 15.68 14.88 14.2 16.26
3 64 0.1 11.46 11.65 9.19 5.53 1.61
3 128 0.1 12.74 12.24 10.82 8.87 4.06
4 64 0.01 20.58 20.85 20.32 19.78 16.07
4 128 0.01 22.48 22.77 22.45 21.25 15.97
4 64 0.1 12.64 12.88 11.33 11.86 2.52
4 128 0.1 14.79 14.18 12.99 11.15 4.63
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Figure 4.1: (i) 32 point irregularly sampled version of the Heavisine function and
the original noisy signal (σ = 0.2). (ii) The 1024 point interpolated versions of
the function given at (i) using different interpolation methods.
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Figure 4.2: (i) 32 point irregularly sampled version of the Heavisine function and
the original noisy signal (σ = 0.5). (ii) The 1024 point interpolated versions of
the function given at (i) using different interpolation methods.
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Figure 4.3: (i) 32 point irregularly sampled version of the Heavisine function
and the original noiseless signal. (ii) The 1024 point interpolated versions of the
function given at (i) using different interpolation methods.
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Figure 4.4: (i) 32 point irregularly sampled version of the Heavisine function
and the original noiseless signal. (ii) The 1024 point interpolated versions of the
function given at (i) using different interpolation methods.
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Figure 4.5: (i) 128 point irregularly sampled version of the Heavisine function
and the original noisy signal (σ = 0.2). (ii) The 1024 point interpolated versions
of the function given at (i) using different interpolation methods.
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Figure 4.6: (i) 128 point irregularly sampled version of the Heavisine function
and the original noiseless signal. (ii) The 1024 point interpolated versions of the
function given at (i) using different interpolation methods.
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Figure 4.7: (i) 256 point irregularly sampled version of the Heavisine function
and the original noisy signal (σ = 0.2). (ii) The 1024 point interpolated versions
of the function given at (i) using different interpolation methods.
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Figure 4.8: 4 of the other test signals that we used in our experiments. The
related reconstruction results are presented in Table 4.2
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(a)

Figure 4.9: Restored Heavisine signal after 1, 10, 20 and 58 iteration rounds.

Figure 4.10: The original terrain model. The original model consists of 225×425
samples
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Figure 4.11: The terrain model in Figure4.10 reconstructed using one-fourth of
the randomly chosen samples of the original model. The reconstruction parame-
ters are wc =

π
4
, δs = 0.03, and ei = 0.01.
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Figure 4.12: The terrain model in Figure 4.10 reconstructed using 1
8
of the ran-

domly chose samples of the original model. The reconstruction parameters are
wc =

π
8
, δs = 0.03, and ei = 0.01.
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4.2 Signal Reconstruction from Random Sam-

ples

As presented in Section 1.2, CS framework defines a set of rules for taking com-

pressed measurements from a signal, and reconstructing the original signal from

those compressed measurements. In this section, the sampling part of the CS

framework is used as it is (c.f. Section 1.2). On the other hand, a new signal

reconstruction algorithm, which utilizes both row-iteration method from interval

convex programming, and entropic projection operator, is defined.

Assume that, a length-N signal x has a K-sparse transform domain represen-

tation s. The relation between x and s can be defined as in the following two

equations

si =< x, ψi >, i = 1, 2, ..., N, (4.12)

x =
N
∑

i=1

si.ψi, or x = ψ.s, (4.13)

where ψ is the transformation matrix and ψi is ith row of the transformation

matrix. According to CS theory, compressed measurements y can be taken from

signal x as

y = φ.x = φ.ψ.s = θ.s (4.14)

where φ is the M ×N measurement matrix, and M << N . The K-sparse signal

s can be reconstructed from compressed measurement by solving following the ℓo

norm optimization problem

min
s

||s||0

subject to θ.s = yi .
(4.15)

As mentioned before (4.15) is an combinatorial problem. On the other hand, if

RIP conditions [6, 21] are satisfied by the sampling procedure, then problem in

(4.15) can be approximated by the ℓ1 norm optimization as

min
s

||s||1

subject to θ.s = yi .
(4.16)
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In this thesis, the ℓ0, and the ℓ1 norms based cost functions are replaced by

entropy functional in (2.15). Moreover, the CS reconstruction problem is divided

into smaller subproblems so called row-iterations and solved through successive

local D-projections. Bregman developed iterative row-action methods to solve

the global convex optimization problem by successive local D-projections [13].

The global CS optimization problem can be divided into smaller optimization

problems, and the ith step of the problem can be defined as follows

si = arg min D(s, si−1)

subject to θi.s = yi, i = 1, 2, ...,M.
(4.17)

where D(s, si−1) is the D-distance, which is defined as

D(s, si−1) = g(s)− g(si−1)− < ▽g(si−1), s− si−1) >, (4.18)

g(s) is a convex cost function, and θi is the i
th row of the constraint matrix. In each

iteration step, a D-projection, which is a generalized version of the orthogonal

projections, is performed onto a hyperplane represented by a row of the constraint

matrix θ. In [13], Bregman proved that the proposed D-projection based iterative

method is guaranteed to converge to global minimum if the algorithm starts from

a proper choice of initial estimate (e.g. s0 = 0)

Since, neither the ℓ0 norm nor the ℓ1 norm are convex, the original CS re-

construction problems in (4.15), and (4.16) cannot be solved using row itera-

tion methods. Therefore, they are replaced by the modified entropy functional

ge(v) = (|v|+ 1
e
) log(|v|+ 1

e
)+ 1

e
, which is a convex and continiously differentiable

function as shown in Appendix A. In Chapter 2, it is shown that if the modified

entropy functional is used in (4.17), this optimization problem can be solved us-

ing row action methods. Each row action step is actually an entropic projection

onto the hyperplanes that are defined by the rows of the constraint matrix θ.

The proposed algorithm works as follows. The iterations start with an initial

estimate so = 0. In the first iteration cycle, this vector is D-projected onto

the hyperplane H1 and s1 is obtained. The iterate s1 is projected onto the next

hyperplaneH2 (see Figure 4.13). This iterative process continues until theN − 1st
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estimate sN−1 is D-projected onto HN and sN is obtained. In this way the first

iteration cycle is completed. In the next cycle, the vector sN is projected onto

the hyperplane H1 and sN+1 is obtained etc. Bregman proved that the iterates si

converges to the solution of the optimization problem in (4.17). The geometric

interpretation of the algorithm is given in Figure 4.13.

s0

s1

s2

y1 = θ1s

y2 = θ2s

Figure 4.13: Geometric interpretation of the entropic projection method: Sparse
representation si corresponding to decision functions at each iteration are updated
so as to satisfy the hyperplane equations defined by the measurements yi and the
measurement vector θi. Lines in the figure represent hyperplanes in R

N . Sparse
representation vector si converges to the intersection of the hyperplanes. Notice
that D-projections are not orthogonal projections.

Bregman’s D-projection method can handle inequality constraints as well.

The iterative algorithm is still globally convergent, when the equality constraints

in (4.17) are relaxed by ǫi

yi − ǫi ≤ θis ≤ yi + ǫi, i = 1, 2, ..., N. (4.19)

This is because hyperslabs defined by (4.19) are also closed and convex sets.

In each step of the iterative algorithm the current iterate is projected onto the

closest boundary hyperplane defined by one of the inequality signs in (4.19). If

the iterate satisfies the current inequality, it is simply projected onto the next

hyperslab.
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The globally convergent row-action method described above can be easily

extended to a block iterative version by combining the entropic D-projections to

several rows of the θ matrix. However, we can not give a convergence proof of

the block-iterative method at this point.

Instead of performing successive D-projections onto each hyperplane con-

straint, as in (4.17), it is also possible to perform groups of projections. In [122],

a parallel version of the POCS algorithm called the block iterative approach is

presented. In this version, one may project the current iterate si−1 onto a set of

hyperplanes defined by the rows of the measurement matrix θ. The selection of

the rows of the measurement matrix onto which the current iterate will be pro-

jected onto can be selected either consecutively, randomly or according to a rule.

The geometric interpretation of the parallel algorithm is illustrated in Figure 4.14

Typically, the parallel algorithm converges faster. However, the convergence of

the algorithm for this problem cannot be proved at this stage.

Figure 4.14: Geometric interpretation of the block iterative entropic projection
method: Sparse representation si corresponding to decision functions at each iter-
ation are updated by taking individual projections onto the hyperplanes defined
by the lines in the figure and then combining these projections. Sparse repre-
sentation vector si converges to the intersection of the hyperplanes. Notice that
D-projections are not orthogonal projections.

62



4.2.1 Experimental Results

For the validation and testing of the entropic minimization method, experiments

with 3 different one-dimensional (1D) signals, and 6 different images are carried

out. The cusp signal, which consists of 1024 samples, and hisine signal, which

consists of 256 samples are shown in Figures 4.15, 4.16, respectively. The cusp

and the hisine signals can be sparsely approximated in DCT domain. The 4

random signal is composed of 128 samples and it consists of 4 randomly located

non-zero samples. The measurement matrices φ are chosen as Gaussian random

matrices.

In the first set of experiments M = 204, 717 measurements are taken from

the cusp signal and M = 24, 40 measurements are taken from the S = 5 random

signal. The original signals are reconstructed from those measurements. The re-

constructed signals using the entropy based cost functional are shown in Figures

4.17(a), 4.17(b), 4.18(a), and 4.18(b). The cusp signal has 76 DCT coefficients,

whose magnitudes are larger than 10−2. Therefore, it can be approximated by a

S = 76 sparse signal in DCT domain. 39 and 44 dB SNR are achieved by the

reconstructing the original signal using the proposed method from M = 204, 717

measurements respectively. In case of the experiment with random signals, the

proposed method missed one sample from the original signal using 30 measure-

ment and perfectly reconstructed the original signal using 50 measurements.
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Figure 4.15: The cusp signal with N = 1024 samples
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Figure 4.16: Hisine signal with N = 256 samples
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(a) N = 1024 length cusp signal reconstructed from 204 measurements
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(b) N = 1024 length cusp signal reconstructed from 716 measurements

Figure 4.17: The cusp signal with 1024 samples reconstructed from M = 204
(a) and M = 716 (b) measurements using the iterative entropy functional based
method.
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(a) N = 128 length random sparse signal reconstructed from 3S = 15 measurements
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(b) N = 128 length random sparse signal reconstructed from 4S = 20 measurements

Figure 4.18: Random sparse signal with 128 samples is reconstructed from (a)
M = 3S and (b) M = 4S measurements using the iterative, entropy functional
based method.
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In the next set of experiments, the reconstruction results of the proposed

algorithm is compared with the CoSaMP algorithm [18]. Different amount of

measurements in the range of 10% to 80% of the total number of the samples of the

1D signal are taken and the original signal is estimated. Then the SNR between

the original and the reconstructed image are measured. The SNR measure is

defined as follows;

SNR = 20log10

(

||x||2
||x− xrec||2

)

, (4.20)

where x is the original signal and xrec is the reconstructed signal. As shown in

Figures 4.19, 4.20, and 4.21, the proposed algorithm outperforms CoSaMP for the

reconstruction of the cusp and hisine signals. For example, the proposed method

achieves 15dB SNR at 103 measurements (10%), while CoSaMP achieves only

3dB SNR for the cusp signal.
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Figure 4.19: The reconstructed cusp signal with N = 1024 samples

It is important to note that, neither the cusp nor the hisine signals are sparse.

They are compressible in the sense that most of their transform domain coeffi-

cients are not zero but negligibly small [123]. Therefore, their sparsity level can

not be known exactly beforehand. On the other hand, the CoSaMP method out-

performed the proposed algorithm for the 25 sparse random signal, which consists

of randomly located 25 isolated impulses. In this case the sparsity level is ex-

actly known beforehand. Both the proposed algorithm and the CoSaMP method
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Figure 4.20: The reconstruction error for a hisine signal with N = 256 samples.

achieved higher than 50 dB SNR level, for the same number of measurement. Due

to numerical imprecision in the calculation of the alternating entropic projections,

the proposed algorithm achieves approximately 50 dB SNR. On the other hand

the CoSaMP method achieved approximately 300 dB SNR. Above 40-50 dB of

SNR, the signal reconstruction can be counted as perfect reconstruction. There-

fore, it can be safely said that both algorithms achieved perfect reconstruction at

the same measurement level.

In the last set of experiments, the proposed algorithm is implemented in 2-

dimensional (2D) and applied to 26 different images. The results are compared

with the block based compressed sensing algorithm given in [2]. As in [2] the

image is divided into blocks and reconstructed from those block individually. The

proposed and Fowler et.al’s algorithms are tested using random measurements,

that are as many as the %30 of total number of the pixels in the image.

In Figures 4.22, 4.23, and 4.24 details extracted from images reconstructed

using (a) the proposed method, and (b) the method in [2]. Images reconstructed

using Fowler’s method are oversmoothed whereas the proposed reconstruction

methods leads to more sharp images. For example, in the fingerprint image that

is shown in Figure 4.22, the fingerprint lines seem to be slightly oversmoothed by
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Figure 4.21: The impulse signal with N = 256 samples. The signal consists of 25
random amplitude impulses that are located at random locations in the signal.

Fowler’s reconstruction shown in (b) compared to the entropy projection based

reconstruction shown in (a). The difference can be seen much better in Figure

4.23. The hair detail around the eyes and the nose of the Mandrill is kept by the

entropy projection based reconstruction whereas Fowler’s method oversmoothed

all the details. Same effect can be seen at the window detail of the house in

Figure 4.24.

In all of the above examples, the entropic projection algorithm is implemented

as follow. The algorithm starts with an initial estimate of the signal such as

a zero amplitude signal. Then in the first iteration cycle the estimated signal

is entropically projected on the hyperplanes defined by the measurements one

after another. At the end of the iteration cycle, transform domain coefficients of

the resulting estimate are rank ordered according to their magnitude values and

only the significant coefficients are kept and the rest is set to zero. After each

iteration cycle the number of retained transform domain coefficients that are kept

is increased by one. The upper bound of the transform domain coefficients that

are kept during the iterations can not exceed the number of the measurements.

If the initial signal is known to be exactly K-sparse, then only K largest absolute

valued transform domain coefficients kept.
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(a) Rec (b) FWL

Figure 4.22: Detail from resulting reconstruction of the Fingerprint image using
(a) the proposed and (b) Fowler’s [2] method.

It is important to note that, in both methods, the images are processed using a

low-pass filter to smooth out the blocking artifacts caused due to block processing.

SNR values obtained through the experiments with different images can be

found in Table 4.3. In most of the cases approximately 1dB higher SNR compared

to the algorithm given in [2] is achieved by the proposed algorithm.

The experimental results given in this section indicate that it is possible to

Table 4.3: Image reconstruction results. The images are reconstructed using
measurements that are 30 % of the total number of the pixels in the image.

Fowler’s Method [2] Proposed Method
Images SNR in dB SNR in dB
Barbara 19.412 18.528
Mandrill 16.822 17.401
Lenna 26.516 26.806
Goldhill 22.473 23.857

Fingerprint 20.171 22.205
Peppers 26.831 25.854

Kodak(Average) 21.51 21.98
Average 21.63 21.90
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(a) Rec (b) FWL

Figure 4.23: Detail from resulting reconstruction of the Mandrill image using (a)
the proposed and (b) Fowler’s [2] method.

reformulate the CS reconstruction problem using the modified entropy based cost

function based regularization. Since this function approximates the ℓ1 norm and

is continuous and differentiable everywhere, the proposed formulation of the re-

construction problem can be solved using interval convex optimization metods;

such as iterative row-action methods. The proposed algorithm is globally conver-

gent due to POCS theorem. It is experimentally observed that the entropy based

cost function and the iterative row-action method can be used for reconstruct-

ing both sparse and compressible signals from their compressed measurements.

Since most practical signals are not exactly sparse but compressible, the proposed

algorithm is suitable for compressive sensing of practical signals.

It should also be noted that the row-action methods provide a solution to the

on-line CS problem. The reconstruction result can be updated on-line according

to the new measurements without solving the entire optimization problem again

in real time.
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(a) Rec (b) FWL

Figure 4.24: Detail from resulting reconstruction of the Goldhill image using (a)
the proposed and (b) Fowler’s [2] method.
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Chapter 5

SIGNAL DENOISING

This chapter comprises of two different signal denoising algorithms. In Section

5.1, an algorithm that makes use of block processing to solve the TV denoising

problem. The algorithm adapts itself to the local content of the image blocks

and adjusts the TV denoising parameters accordingly. In Section 5.2, an image

denoising algorithm, which utilizes the filtered variations contraints defined in

3.1, is presented.

5.1 Locally Adaptive Total Variation

In this section, a local Total Variation (LTV), and a locally adaptive Total Vari-

ation (LATV) regularized denoising scheme are introduced. In the proposed

approaches an N-by-M image x is reconstructed from its noisy observation y us-

ing LTV or LATV denoising algorithm. In ordinary TV approach, the TV cost

function is minimized over the entire image. However, the correlation between

the samples in a typical signal or an image decreases as the distance between

two samples increases. Therefore, globally minimization of a cost function over

the whole signal may not be necessary in denoising problems. Block processing

is a commonly referred technique in image processing to take advantage of local

processing and computational efficiency. On the other hand, the disadvantage
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of block processing techniques is that they may introduce artificial edges at the

boundaries of the blocks in the restored image.

Both LTV and LATV methods are block based algorithms. They work like a

nonlinear filter and produces a single output for each input block. Therefore, they

do not suffer from blocking artifacts. Furthermore, LATV enables the possibility

of adapting optimization parameters according to the block content and introduce

adaptivity to the TV cost functional.

In image denoising problem, it is assumed that the original signal x is cor-

rupted by additive noise u as follows

y = x + u. (5.1)

In TV regularization based denoising approach, the original signal is estimated

by solving the following minimization problem:

min
x

||x||TV

subject to ||y − x|| ≤ ε.
(5.2)

or in Lagrangian formulation

min
x

||y− x||2 + λ||x||TV (5.3)

where ε is the error tolerance, and λ is the Lagrange multiplier. There exists

an ε corresponding to each λ such that both optimization problems result in the

same solution [124, 125]. These parameters can also be used for adjusting the

smoothness level of the solution. In [19], an iterative algorithm was proposed to

solve the optimization problem given in (5.2) and (5.3). This algorithm solves

the TV minimization optimization on the whole image; therefore, as the image

size increases, the problem size also increases, and therefore the computational

complexity of the algorithm increases.

In regular TV denoising only a single optimization problem is solved for the

entire image. Due to this global approach, some of the high-frequency details of

the image may be over-smoothed or the noise may not be cleaned effectively at
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smooth regions. To deal with this problem, a local adaptation strategy is devel-

oped. The proposed LTV and LATV methods overcome this problem through a

block-based local adaptation strategy.

Let wn be a window centered at the pixel n = (n1, n2). The window can be

a rectangular window, or it can take any shape. Furthermore, one can apply

decaying weights to the samples within each window. LTV algorithm solves the

following problem for each pixel

min
x[n]

∑

k∈wn

▽x[k]

subject to
∑

k∈w[n]

(x[k]− y[k])2 < ε
(5.4)

where k = (k1, k2). Chambolle’s algorithm [19] actually restores all the pixels

in w[n], but only the center pixel is picked as the restored output. To restore

the next pixel, the analysis window is moved one pixel to the left (k1, k2 + 1), or

down (k1 + 1, k2), and the problem described in (5.4) is solved once again. The

entire noisy image is processed pixel by pixel in this manner. The optimization

problem described in (5.4) is solved in a small neighborhood unlike (5.3), which

is solved for the entire image. Therefore, the computational complexity of the

LTV method is low.

The optimization parameter ε in (5.4) can be used to set the smoothness level

of the solution. As ε value increases, the minimization part will turn out more

smooth regions. Ideally, it should be selected close to the standard deviation of

the signal noise [19], which can be estimated from the flat regions of the image.

In the first set of experiments that is summarized in the first two columns of

Tables 5.1 and 5.2, we used the same optimization parameter (just scaled by the

number of the pixels in the processing area) for both the ordinary TV and the

proposed LTV methods.

We tested the proposed approach on 35 different images. We used 24 images

from the Kodak dataset taken from http://r0k.us/graphics/kodak/ and some well

known images from image processing literature. We selected the block size as 9×9.

According to the results summarized in Table 5.1 and 5.2, the LTV approach
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provides slightly better results compared to Chambolle’s global algorithm [19]

even without varying the optimization parameters over the image.

Solving the TV problem in (5.2) and (5.3) using the same optimization pa-

rameters throughout the entire image does not produce the best denoising results.

As pointed out before, this approach may cause over smoothing of the high-pass

details, or may not effectively clean the noise at smooth blocks. In the LATV

algorithm, an adaptivity stage is added to the LTV algorithm. The optimization

parameter ε in (5.4) is varied according to the local content of the processed block

of the image.

When there is an edge in the analysis block, the optimization parameter ε is

decreased compared to the flat regions of the image. In order to determine edges

in the analysis block, the local TV value of the block is used. In Figures 5.1.(a),

5.1.(b), and 5.1.(c), the TV images of the original, noisy and low-pass filtered

noisy (simple 3-by-3 averaging filter) Cameraman images are shown, respectively.

Images shown in Figure 5.1 are determined as follows: The TV value is computed

in an r× r (r = 3) window for each pixel. In Figure 5.1.(c) the image is low-pass

filtered first and the TV value of each pixel is computed afterwards.

As shown in Figure 5.1.(c), it is possible to use a threshold on the TV value

of a block to determine blocks with high edge content. The threshold value can

be determined in a heuristic manner or using the threshold TTV = µTV + ασTV

where µTV and σTV are the mean and standard deviation value of the TV of the

blocks in the image, respectively. The parameter α can be selected as any number

between 2 and 3.

One can also use other edge detection methods, but we prefer to use the TV

values of each block to reduce the computational cost of the denoising process

because the TV value of each block is computed during the minimization of (5.4).

The locally adaptive method is not very sensitive to the threshold value be-

cause denoising is performed in all the blocks regardless of the nature of the block.

An incorrect edge decision does not produce discontinuities in the image because

whenever the nature of the block is incorrectly determined it is highly likely that
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the next block is also incorrectly decided.

In blocks containing edges, the optimization parameter ε is simply reduced to

ε1 < ε. The third columns of Table 5.1 and 5.2 are obtained with ε1 = 0.85ε.

(a)

(b) (c)

Figure 5.1: TV images of (a) original, (b) noisy, and (c) low-pass filtered noisy
Cameraman images. All images are rescaled in [0, 1] interval.

As summarized in Table 5.1 the LATV approach provides an 0.5 dB improve-

ment over the standard TV approach in our dataset consisting of 35 images when

the noise is Gaussian with standard deviation σ = 0.1. Original image pixel

values are normalized to [0, 1] range before adding the noise. In Table 5.2, the

improvement is 0.3 dB when σ = 0.2.

In Figure 5.2.(a), an image from Kodak database is shown. Images restored

using TV regularized denoising algorithm [19], LTV, and LATV are shown in
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Figures 5.2.(b), 5.2.(c), and 5.2.(d), respectively. Details extracted from recon-

structed images are also shown in the left column of the respective images. The

eye of the parrot is over-smoothed by the ordinary TV algorithm as shown in

Figure 5.2.(b). On the other hand, LTV and LATV methods preserve the details

of the eye region. The performance of the LTV, and LATV methods are also

slightly better or comparable in smooth edges as shown in right column of Figure

5.2.(b).

Table 5.1: The denoising results of the dataset images, which are corrupted by
Gaussian noise with a standard deviation σ = 0.1.

TV LTV LATV

lena 22.23574 22.19087 22.47191
peppers 21.57556 21.59862 21.86155
mandrill 18.04912 18.32569 18.4303
goldhill 20.67087 20.2761 20.58329
house 25.07268 24.77957 25.04167

phantom 19.43513 19.88716 20.22095
flintstones 19.72539 19.73119 19.96897
fingerprint 18.26503 18.13161 18.13784

barbara 18.87506 19.31177 19.48198
cameraman 21.95962 22.08064 22.41337

boat 21.04447 21.02014 21.31028
Kodak (Average) 19.79169 20.07921 20.32923

Average 20.05455 20.26384 20.50925

The experimental results indicate that the LATV scheme produces better

SNR values compared to the TV regularized denoising scheme in our data set.

The proposed LATV regularized denoising method acts like a nonlinear filter in

each block of the input. Through the LATV approach, it is possible to adapt the

optimization parameters for each block according to the content of the individual

block. By this way, the LATV approach obtained better SNR results compared

to the original TV denoising approach. Another advantage of the LATV is that

it can restore very large images because it solves small sized TV optimization

problems separately. It is also possible to implement the LATV algorithm using

parallel computers because the optimization is performed locally.
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Table 5.2: The denoising results of the dataset images, which are corrupted by
Gaussian noise with a standard deviation σ = 0.2.

TV LTV LATV

lena 19.24773 19.2451 19.00683
peppers 18.36458 18.48303 18.46
mandrill 15.36189 15.47109 15.63699
goldhill 18.19988 18.05389 18.06939
house 21.59912 21.66437 21.61823

phantom 14.26244 14.76556 14.89326
flintstones 15.73838 15.61027 15.97411
fingerprint 14.79675 14.4792 14.54405

barbara 16.45275 16.58397 16.5387
cameraman 18.4502 18.53198 18.7544

boat 18.06239 18.02803 18.18796
Kodak (Average) 16.91179 17.20234 17.34503

Average 17.04054 17.25065 17.37042
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(a)

(b)

(c)

(d)

Figure 5.2: The denoising result for (a) 256-by-256 kodim23 image from Kodak
dataset, using (b) TV regularized denoising, (c) LTV, and (d) LATV algorithms.
Details that are extracted from the reconstruction results are also presented in
the right column of the respective images. The original image is corrupted by
Gaussian noise with a standard deviation σ = 0.1.
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5.2 Filtered Variation based Signal Denoising

In this section, an algorithm that denoises the noisy signal y by putting bounds

on the variation of the reconstructed signal is introduced. These bounds can be in

spatial domain, as well as in a signal transform domain (e.g. DFT, DCT, DHT).

The signal model is the same as in Section 5.1. The original signal x is corrupted

by additive noise u as in (5.1).

In FV based denoising, the goal is to find a solution to the following optimiza-

tion problem:

min FVp(x) (5.5)

s.t. ‖x− y‖ ≤ δ (5.6)

where FV stands for the filtered variation and it is defined as follows:

FVp(x) = ‖HDx‖p , p = 1, 2 (5.7)

where X,D and H represent the signal, the signal transform (e.g., DCT, DHT,

DFT) and the discrete-time filter in the transform domain, respectively and p

denotes which ℓp-norm is used. In (5.6) and (5.7) the norm can be selected as the

ℓ1 or ℓ2 norms, which correspond to anisotropic and isotropic FV, respectively.

In the FV approach, denoising is achieved by minimizing the high-frequency

energy of the observations, subject to the constraint given in (5.6). In (5.5)-(5.7)

we posed the problem in frequency domain because for any given fixed transform,

noise is typically in coherent with the transform, therefore it is spread out. By

means of a proper filtering operation in the transform domain, one can exploit this

fact to effectively denoise the signal. Besides, it is possible to solve the problem

completely in time (or space) domain as well.

We solve this regularized signal denoising problem by applying several different

time (space) and frequency domain constraints on filtered versions of the signal x.

This approach is similar to the methodology described in [85, 87, 126]. Since the

FV cost function is convex it is also possible to solve FV based problems using

convex programming. We provide a solution using the Projections onto Convex
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Sets (POCS) method. The following FV based constraints correspond to a class

of convex sets:

Cp
i = FVp(x) =

{

‖HDx‖p ≤ ε
}

, p = 1, 2 and i = 1, . . . ,M. (5.8)

where p = 1, 2 corresponds to the ℓ1 and the ℓ2-norms respectively. Other closed

and convex sets, described in Section 5.2 can be also imposed on the desired signal

x. The solution of the denoising problem is assumed to lie in the intersection of

M different constraint sets as follows:

x ∈ C =

M
⋂

i=1

Ci, (5.9)

where the constraint sets (Ci) are defined by the convex constraints as given at

(5.8). Therefore, it is possible to reconstruct the original signal by performing

successive orthogonal projections onto the closed and convex sets Ci [13, 17].

The POCS based iterative algorithm consists of making successive operations in

time (or space) and transform domains, and it converges to a solution in the

intersection of constraint sets Ci.

Extension to 2-D or higher dimensional signals is straightforward. Instead of

a 1-D high-pass filter, 2-D or higher dimensional high-pass filters can be used in

(5.9).

For image denoising applications, 6 different filtered variation constraints are

designed in this thesis. These contraints are defined in Section 3.1. In each test,

a subset of these constraints are applied on the noisy signal one-by-one, and the

solution at the intersection the constraints in the set is obtained.

We first present a denoising example from [3]. Combettes and Pesquet used

the image shown in Fig.5.3-(a) in [3], to test their TV based denoising algorithm.

They added i.i.d. Laplacian noise to the original 128x128 grayscale image. The

signal-to-noise ratio is 1dB. To compare the FV algorithm to the TV denoising, we

cropped the original image (Fig. 5.3-(a)) from their paper and added Laplacian

noise to the image. In [3] the pixel range was [-261,460]. In our case the pixel

range turns out to be [-391,511].
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As shown in Fig. 5.3, the characters in the image that are recovered by FV

based denoising algorithm (Fig.5.3-(e)) are visually sharper compared to Fig.5.3-

(c) and the impulsive noise is significantly reduced compared to ℓ1 denoising.

In [3], the authors used Normalized Root Mean Square Error (NRMSE) as

the error metric. They measure the error between the original signal x and

reconstructed signal xo as

||x− xo||/||xo||. (5.10)

The progress of the decrease in reconstruction error, is shown in Fig. 5.4. FV

based denoising algorithm converges to an NRMSE level of -9 dB in 10-to-12

iterations. On the other hand, the time-domain TV algorithm takes around 100

iterations to converge as shown in Fig. 18 in [3].

ℓ1 and ℓ2 high-frequency energy bounds ε1 and ε3 can be estimated from the

noisy image. In another set of experiments, the bounds are selected as 80%

of ℓ1 (ε1a), 60% of ℓ1 (ε1b) and 80% of the ℓ2 (ε3a) energies of the noisy image,

respectively. ε1o corresponds to the ℓ1 energy of the original image. Experimental

results indicate that estimating ε1 and ε3 are possible from flat portions of the

image and the FV algorithm is not sensitive to the ε1 and ε3 values. As shown in

Fig. 5.4, in all cases NRMSE values for the restored images are very close to each

other. Convergence graphs closely overlap with each other as shown in Fig.5.3

In another experiment the fingerprint shown in Fig.5.5-(a) is used. A noisy

version of the image (Fig. 5.5-(b)) with SNR=4.9dB, is obtained by adding

White Gaussian Noise to the original signal. Using FV constraints, lead to the

reconstructed signal with SNR=12.75 dB (Fig. 5.5-(d)). On the other hand, TV

constraint leads to an image with SNR=7.45dB (Fig. 5.5-(c)).
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(a) (b)

(c) (d)

(e)

Figure 5.3: (a) Original image. (b) noisy image. (c) ℓp denoising with bounded
total variation and additional constraints [3] (Fig. 15 from [3]) (p=1.1). (d)
ℓp denoising without the total variation constraint [3] (Fig. 16 from [3]). (e)
Denoised image using the FV method using C2, C4 and C5.
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Figure 5.4: NRMSE vs. iteration curves for FV denoising the image shown in
Fig. 5.3. ε1o and ε3o correspond to the ℓ1 and ℓ2 energy of the original image.
Bounds are selected ε1a = 0.8ε1o, ε1b = 0.6ε1o, and ε3a = 0.8ε3o
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(a) (b)

(c) (d)

Figure 5.5: (a) Original fingerprint image, (b) fingerprint image with AWGN
(SNR = 4.9 dB). (c) Image restored using the TV constraint ( SNR=7.45dB).
(d) Image restored using the proposed algorithm using C2, C4 and C5 (SNR=12.75
dB)
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In another set of experiments, the edge preserving characteristic of the pro-

posed FV scheme is tested. The FV scheme, gives the user the possibility to use

any type of high-pass filter that he/she desires to use. This feature of the pro-

posed FV scheme is very useful, especially when the user has some prior knowledge

about the signal. As a first step, the user may group the samples of the signal

into two sets as low-pass and high pass samples using a set of high-pass filters.

This aim can be achieved by determining samples, which gives high amplitude

output to a high-pass filter. Even if the user does not have a prior knowledge

about the signals high-pass content, it is possible to filter the signal by various

high-pass filters, and choose a subset of the filters according to their responses.

The samples in a signal can be grouped as

n ∈















n1,

l
∑

i=−l

hk[i]x[n− i] > Tk

n2, else

, n = 1, 2, ..., N. (5.11)

where N , 2l + 1, are the length of the signal and the high-pass filter hk, respec-

tively, and k = 1, ..., N is the high-pass filter number. In this way, it is possible to

generate a mask for each high-pass filter hk that indicates edge or high-frequency

content samples of the signal. The union of these masks of different high-pass

filters gives an idea about the variation content of the whole signal. This proce-

dure can also be considered as a FV constraint, and used together with the other

FV constraints given in Chapter 3. For example, the samples that are classified

as low-pass are updated through “Constraint II: Time and Space Domain Local

Variational Bounds” defined in Section 3.1.2 with a low amplitude P parameter.

In the following experiment, this filter selection based Filtered variation idea is

implemented and tested on 5 different images (Cameraman image and 4 different

images from Kodak dataset). Constraints given in Sections 3.1.1,3.1.2,3.1.5, and

3.1.6 are used together with the above mentioned new FV constraint. Here the

threshold value Tk given in (5.11) is taken as the variance of noise on the signal.

Among K = 15 different high-pass filters, five filters, which gave the highest

energy output, and their respective masks are used to group the signal samples.

The filter selective pixel grouping stage described above avoids smoothing out

the edges of the test images. On the other hand, it smoothes the variation around
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the low-pass pixels by applying FV constraints on them. Some pixels in the

processed image may wrongly be classified as high-pass pixels due to noise. The

smoothing operation applied on the low-pass pixels also smoothes these isolated

isolated high-pass pixels, which are located around the low pixels. As shown

in Figure 5.6, as the iterations of the algorithm proceeds, these isolated pixels

in the mask image are cleaned and the real edges in the original image remains

untouched.

(a) (b)

(c) (d)

Figure 5.6: (a) The wall image from the Kodak dataset. The mask images re-
garding the Wall image after (b) 1, (c) 3, and (d)8 iterations of the algorithm.
The masks are binary and white pixels represent the samples that are classified
as high-pass.

Images reconstructed using TV based denoising [19] and the proposed methods

results in similar SNR values. However, the proposed method preserves the edge

content of the image while TV method smoothes out the edges in the image and

leads to much blurred reconstructions. The blurring effect of the TV method can

be seen in the detail at the right columns of Figures 5.7-5.11. For example, in

Figure 5.7, the columns of the building at the background is blurred, but it is
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preserved by the proposed method. In Figures 5.8, 5.9, 5.10, and 5.11, same kind

of an effect can be seen at the head of the parrots, the fences of the lighthouse,

the texture on the wall and the window of the house respectively.

In this section, Filtered variation framework is applied to signal denoising

problem. In the proposed algorithm, regularization is achieved by using discrete-

time high-pass filters instead of taking the difference of neighboring signal samples

as in the TV method. The FV based denoising problem is solved by making

alternating projections in space and transform domains. It is experimentally

observed that FV approach provides better denoising results compared to the

TV approach. If some prior knowledge about the original signal exists, it is

possible to design high-pass filters according to the signal and incorporate it to

the FV framework.
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(a)

(b)

(c)

(d)

Figure 5.7: The (c) TV and (d) FV based denoising result for (b) the noisy version
of the (a) 256-by-256 original cameraman image. Details that are extracted from
the reconstruction results are also presented in the right column of the respec-
tive images. The original image is corrupted by Gaussian noise with a standard
deviation σ = 0.1.
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(a)

(b)

(c)

(d)

Figure 5.8: The (c) TV and (d) FV based denoising result for (b) the noisy
version of the (a) 256-by-256 original kodim23 image from Kodak dataset. Details
that are extracted from the reconstruction results are also presented in the right
column of the respective images. The original image is corrupted by Gaussian
noise with a standard deviation σ = 0.1.
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(a)

(b)

(c)

(d)

Figure 5.9: The (c) TV and (d) FV based denoising result for (b) the noisy
version of the (a) 256-by-256 original kodim19 image from Kodak dataset. Details
that are extracted from the reconstruction results are also presented in the right
column of the respective images. The original image is corrupted by Gaussian
noise with a standard deviation σ = 0.1.
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(a)

(b)

(c)

(d)

Figure 5.10: The (c) TV and (d) FV based denoising result for (b) the noisy
version of the (a) 256-by-256 original kodim01 image from Kodak dataset. Details
that are extracted from the reconstruction results are also presented in the right
column of the respective images. The original image is corrupted by Gaussian
noise with a standard deviation σ = 0.1.
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(a)

(b)

(c)

(d)

Figure 5.11: The (c) TV and (d) FV based denoising result for (b) the noisy
version of the (a) 256-by-256 original House image. Details that are extracted
from the reconstruction results are also presented in the right column of the
respective images. The original image is corrupted by Gaussian noise with a
standard deviation σ = 0.1.
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Chapter 6

ADAPTATION AND

LEARNING IN MULTI-NODE

NETWORKS

In this chapter, we describe modified entropy, Total Variation (TV), and Filtered

Variation (FV) functional based adaptation and learning algorithms for multi-

node networks. New algorithms learn the environment and converge faster than

ℓ2-norm based algorithms under ε-contaminated Gaussian noise. The modified

entropy functional based adaptive learning algorithms have two stages similar to

the adapt and combine (ATC) and combine and adapt (CTA) frameworks intro-

duced by Sayed et. al. [4]. In a multi-node network, each adaptation step in the

original ATC and CTA frameworks consist of Least mean squares (LMS) or Nor-

malized LMS (NLMS) algorithms, which are essentially an orthogonal projection

operation onto the hyperplane defined by

di,t = hi,tu
′
i,t, (6.1)

where dt, ht, and ut are the output of the ith node, estimated node impulse

response and the node input vector at time t, respectively. Bregman generalized

the orthogonal projection concept by introducing the concept of D-projection

in [13]. This allows the use of any convex function other than g(x) = x2 as a
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distance or cost measure. In the adaptation stage of either of the algorithms, we

replace the NLMS algorithm based update step with the Bregman’s D-projection

approach corresponding to a modified entropy functional based projections.

We also introduce TV and FV based schemes performing spatial and temporal

updates to obtain the final filter updates of each node. The new set of algorithms

are more robust against heavy tailed noise types such as ε-contaminated Gaussian

noise.

This chapter is organized as follows. We will first give a short review of the

adaptation and learning algorithms presented in [4], as well as the original ATC

and CTA schemes. In Section 6.2, we will define a way to embed modified entropy

functional based projection operator into the adaptation stage of the ATC and

CTA schemes. In Section 6.3 we discuss the TV and FV based schemes that

replaces the adaptation and combination steps in the reference algorithms. In

the experimental results section of the paper, we demonstrate the performance of

the proposed schemes using multi node network topologies under Gaussian and

ε-contaminated Gaussian noise.

6.1 LMS-Based Adaptive Network Structure

and Problem Formulation

Assume that we have a network with K nodes, which takes measurements ac-

cording to a linear regression model (e.g., sensors on a wireless sensor network).

The measurement di[t] that are taken by node i ∈ K at time t is given as

di[t] =
M−1
∑

k=0

hi[k]ui[t− k] + ni[t], i = 1, 2, ..., K (6.2)

where ui[t], ni[t] are the input and the noise signals for node i at time t, and hi is

the length-M impulse response of the nodes. The same system can be represented

in vector form as

di[t] = hiu
′
i,t + ni[t] (6.3)
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where ut = [u[t], . . . , u[t−M − 1]].

Adaptive filtering algorithms are frequently used to estimate the node model

and eliminate the noise at the output of the nodes [127, 128]. These algorithms

start from an initial system using the current estimate and the real system output

and update the system impulse response The simple adaptive filtering model is

illustrated in Figure 6.1. The algorithm starts with an initial estimate of the node

impulse response hi,0 and updates this estimate at every time instance t using

the M regressive samples of the input signal ui,t, and the error ǫt between the

real node output di[t] and the estimated output d̃i[t] that can be calculated using

(6.3).

Figure 6.1: Adaptive filtering algorithm for the estimation of the impulse response
of a single node.

Least Mean Squares (LMS) algorithm is one of the most well-known adaptive

filtering algorithm in the literature. It initializes with an arbitrary length-M filter

ho. Coefficients of this filter at time t are updated recursively as follows

ht+1 = ht + µǫtut, (6.4)

where ut = [u[t], . . . , u[t−M−1]], and ǫt is the error signal at time t respectively

and µ is the learning constant of the adaptive filter. The error signal at time t is
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calculated as in [129, 130]

ǫt = d[t]− d̃[t] = d[t]− htu
′
t (6.5)

In the LMS algorithm the main objective is to minimize the square norm of the

error. It is well-known that the Normalized version of the LMS algorithm (NLMS)

can be obtained by solving

min
ht

|ǫt| s.t. d[t] = hu′
t, t = 0, 1, ... (6.6)

which is the orthogonal projection onto the hyperplane d[t] = hut. If the learning

parameter in LMS algorithm is selected as µ = 1
||ut||2

, then the solution is the same

as (6.4). Using this recursive method, the coefficients of the adaptive filter at time

t+ 1 can be estimated from the former set of coefficients at time t.

However, it is shown in [4] that, if the nodes in a network are able to inter-

act with each other, then using diffusion adaptation based algorithms integrated

with LMS type adaptive filtering increases the system performance compared

to handling all the nodes individually. In [4], the authors presented ATC (Fig.

6.2(a)) and CTA (Fig. 6.2(b)) schemes in which the nodes are able to effect the

estimation results of each other. A performance comparison of these adaptation

schemes are presented in [4].

The update and combination equations for ATC scheme in a two node network

are as follows

Node 1 :

{

φ1,t = h1,t−1 + µǫ1,tu1,t

h1,t = αφ1,t + (1− α)φ2,t

(6.7)

Node 2 :

{

φ2,t = h2,t−1 + µǫ2,tu2,t

h2,t = αφ2,t + (1− α)φ1,t

(6.8)

In the CTA scheme, the update and combination steps become

Node 1 :

{

φ1,t−1 = αh1,t−1 + (1− α)h2,t−1

h1,t = φ1,t−1 + µǫ1,tu1,t

(6.9)

Node 2 :

{

φ2,t−1 = βh2,t−1 + (1− β)h1,t−1

h2,t = φ2,t−1 + µǫ2,tu2,t

(6.10)

It is important to note that, both ATC and CTA schemes, that are given in Eq.

(6.7)-(6.10), use LMS algorithm at their adaptation stages.
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(a) ATC diffusion adaptation scheme

(b) CTA diffusion adaptation scheme

Figure 6.2: ATC and CTA diffusion adaptation schemes on a two node network
topology [4].

6.2 Modified Entropy Functional based Adap-

tive Learning

In many cases, ℓ1 optimization is more robust against heavy tailed noise compared

to ℓ2 norm based algorithms [131]. However, convex optimization tools can not be

used to minimize the ℓ1 norm based cost functions. As mentioned in Chapter 2, it

is possible to replace the ℓ2 norm based cost function with modified entropy cost

functional and use Bregman’s D-Projection operator to define entropic projection

operator.
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In our first algorithm, we replace the orthogonal projection operations in ATC

and CTA schemes with the entropic functional based D-projection operation. In

this way, we develop an adaptive learning algorithm, which is robust against the

heavy tailed ε-contaminated Gaussian noise.

We use the same notation as in [4]. Instead of solving (6.4) or (6.6) as in [4],

we reformulate the problem using D-projection operation, and solve

min
φi,t

D(φi,t,hi,t−1) s.t. di[t] = φi,tu
′
i,t (6.11)

for each node at every time instant t to determine the next set of filter coefficients

for the nodes. Using the Lagrange multipliers one can obtain

sgn(φi,t).ln(|φi,t|+
1

e
)=sgn(hi,t−1).ln(|hi,t−1|+

1

e
)+λui,t (6.12)

and

di[t] = φi,tu
′
i,t, (6.13)

which can be solved together numerically to obtain the new set of coefficients.

Instead of (6.11), if we used the Euclidean norm, we would get the first step of

the ATC algorithm.

Since the entropic cost function is convex, the filter coefficients obtained

through the iterative algorithm converge to the actual filter coefficients as in

the LMS algorithm [17, 90], provided that hyperplanes di[t] = φi,tui,t have a

nonempty intersection. In general, this iterative process tracks the hyperplanes

when we have a drifting scenario [90, 118, 132, 133]. This new filter update strat-

egy is used in ATC or CTA frameworks. For example in a two node network that

uses ATC framework, the next set of filter coefficients are obtained through the

combination stage as

hi,t = (1− α)φj,t + αφi,t (6.14)

where φj,t is the intermediate filter coefficients of the neighboring node.

Consider the following experiments in which the parameters are as summa-

rized in Table 6.1. We used two types of noise models in the experiments. One of

them is zero mean, white Gaussian noise with a standard deviation of σd,i that is
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Table 6.1: Simulation parameters.
Filter Length Node 1 Node 2 Number of Number of

M µ σ2
d,1 σ2

d,2 σ2
u α,β Iterations Trials

10 0.005 0.5 - 1 - 2000 1000
10 0.005 0.5 0.3 1 0.7 2000 1000

also used in [4]. In the second case we used ε-contaminated Gaussian noise, which

is composed of two independent white Gaussian noise signals with standard de-

viation σd,i and γ. The probability density function of the ε-contaminated noise

is

N̄σd,i
= (1− ε)Nσd,i

+ εNγ (6.15)

where ε << 1 is a constant. We chose ε = 0.01 and γ = 100 in Table 6.1.

In the first set of experiments, we tested the proposed adaptation approach

on a single node. We also compared our results with the results of the original

ATC and CTA approaches [4]. We obtained the results presented in Figure 6.3.

In our tests and comparisons, we used the EMSE error metric, which was defined

in [4] as

EMSEd
△
= lim

t→∞
E|ui[t](ho − hd,t−1)|

2 , (6.16)

where ho is the actual filter coefficients of the node of interest d. As shown

in Figure 6.3(a), the proposed algorithm converges faster. However it can not

achieve better EMSE value than the LMS based ATC original approach. However,

as presented in Figure 6.3(b), the proposed adaptation method achieved better

EMSE values under ε-contaminated noise.

In the second set of experiments, we test the entropy projection based adapta-

tion method on a two node network, using the ATC scheme. We obtained similar

results as in the single node case. As presented in Figure 6.4(a), the proposed

algorithm could not achieve the EMSE level of the LMS based ATC algorithm

under white Gaussian noise. However, the entropic projection based adaptation

method achieved better EMSE values than the LMS based ATC method under

ε-contaminated noise as shown in Figure 6.3(b).
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Figure 6.3: EMSE comparison between LMS and Entropic projection based adap-
tation in single node topologies under (a) ε-contaminated Gaussian, (b) white
Gaussian noise. The noise parameters are given in Table 6.1, and 6.3

More detailed simulation results using various node topologies are presented

in Section 6.3

6.3 The TV and FV based robust adaptation

and learning

In this section, we introduce the Total Variation (TV) and Filtered Variation

(FV) based diffusion adaptation methods in multi-node networks. The TV and

FV based schemes automatically generate their own adaptation and combination

stages (e.g. in FIRESENSE framework [134–136] the locations of the sensors are
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Figure 6.4: EMSE comparison between LMS and Entropic projection based ATC
schemes in two node topologies under (a) ε-contaminated Gaussian, (b) white
Gaussian noise.The noise parameters are given in Table 6.1, and 6.3

known beforehand). They also enable the user to add more functionalities to

these stages.

For a K-node network, the diffusion adaptation problem can be solved by

solving the following optimization problem

min
∑

i

||hi,t − hi,t−1||+ λ||Ht||TV

subject to di[t] = hi,tui,t, i = 1, 1, . . . , K,

(6.17)

where Ht = [h1,t|h2,t| . . . |hK,t], λ is the regularization parameter, and ||H||TV is

the TV norm defined as follows

||H||TV =
∑

i

|hi − hi−1|. (6.18)
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A related problem is

min
∑

i

||hi,t − hi,t−1||

subject to ||Ht||TV < εs

and di[t] = hi,tui,t , i = 1, 1, . . . , K.

(6.19)

The term ||hi,t − hi,t−1|| in cost functions of (6.17), and (6.19) is a temporal

constraint, which limits the new set of filter coefficients hi,t with respect to the

filter coefficients hi,t−1 at time instant t − 1. The TV term ||Ht||TV in (6.17),

and (6.19) is the spatial constraint, which represents the cooperation between

the nodes. By minimizing this term, we allow neighboring nodes to behave in a

similar manner. The regularization parameter λ determines the composition of

the overall cost function in (6.17). For each λ one can find a corresponding εs

because (6.17) is the Lagrangian version of (6.19).

Solving the optimization problems in (6.17), and (6.19) are not straightforward

and various computational schemes are developed for this purpose [69,97]. On the

other hand, the cost functions in (6.17), and (6.19) are convex and the constraints

in the problems are closed and convex sets. Therefore, the problem can be divided

into subproblems and each subproblem can be solved in an iterative manner using

the Projection onto Convex sets (POCS) framework [3, 13, 17]. This approach

leads to computationally efficient diffusion adaptation schemes for multi-node

networks.

For each node of the network, the temporal constraint is:

||hi,t − hi,t−1|| ≤ εt, i = 1, 2, . . . , K, (6.20)

which limits the difference between the new update hi,t and the previous set

of coefficients hi,t−1. This means that hi,t cannot be too far away from hi,t−1.

Ordinary LMS type update schemes may produce large jumps due to impulsive

noise. The temporal constraint (6.20) limits such behavior. The inequality (6.20)

is a closed ball in R
N when the Euclidean norm is used. To obtain hi,t we first

project hi,t onto the hyperplane di[t] = hi,tui,t and obtain a vector vi,t. This

step is the LMS or the NLMS update in the adaptation stages of the ATC and
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CTA methods. If the vector vi,t satisfies the condition (6.20), then hi,t = vi,t.

Otherwise, vi,t is projected onto the ball defined by (6.20), and we obtain

h̃i,t = αvi,t + (1− α)hi,t−1, (6.21)

where

α =
εs

||vi,t||
. (6.22)

It turns out that the orthogonal projection of vi,t onto the convex set (ball) is

the convex combination of vi,t and hi,t with α as given in (6.22).

When the norm is the ℓ1 norm in (6.20), the solution will obtained using the

orthogonal project onto the ℓ1 ball centered at hi,t−1 with the largest dimension

εt. This type of a projection turns out a sparse vector of filter coefficients [6,11],

and it can be determined as described in [137].

The next step is determined by the TV based spatial constraint for each node,

which is defined as

||hi,t − hi−1,t|| < εs, i = 1 . . .K, (6.23)

where hi,t and hi−1,t are the filter coefficients of two-neighboring nodes. Instead

of constraining the TV function for the entire network, it is easier to impose a

bound for each node one by one. This constraint can also be solved in a similar

way as the temporal constraint.

Using the constraints (6.20), and (6.23), we define a new adaptation diffusion

algorithm in Algorithm 1. The first step of the algorithm can either be the LMS

or the modified entropic projection based update. Both classes of algorithms

are robust against heavy-tailed noise. The computational cost of the modified

entropy functional based scheme is higher compared to the LMS type algorithms

because a nonlinear equations has to be solved at each stage.

In TV approach only the difference between the two neighboring nodes is

computed. The FV approach is a generalized version of the TV approach in

which the differencing operator is replaced by a high pass filter [138]. In this

case, the spatial constraint can be defined as

||hi,t −
∑

j

βjhj,t|| < εs, i = 1 . . .K, i 6= j (6.24)
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Algorithm 1 Adaptation diffusion algorithm with temporal and spatial con-
straints
STEP 0: initialize t = 1, i=1
STEP 1:Adaptation step

ǫi,t = d[t]− hi,t−1ui,t

vi,t = hi,t−1 + µǫi,tui,t,
STEP 2:Temporal Constraint: Projection onto (6.20)

If ||vi,t − hi,t−1|| ≤ εt
h̃i,t = vi,t

else
h̃i,t = αvi,t + (1− α)hi,t−1, α = εt

||vi,t||

STEP 3: Spatial Constraint: Projection onto (6.23)
If ||h̃i,t − hi−1,t|| ≤ εs

hi,t = h̃i,t

else
hi,t = αh̃i,t + (1− α)hi−1,t, α = εs

||h̃i,t||

STEP 4: i = (i+ 1)
If i > N

i = 1, t = t+ 1
end
Go to STEP 1
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Table 6.2: Parameters of the additive white Gaussian noise on different topologies.
M :Filter Length σ2

d,1 σ2
d,2 σ2

d,3 σ2
d,4 σ2

d,5 σ2
u Topology

10 0.5 0.3 - - - 1 Fig.6.5-(c)
10 0.5 0.3 0.3 0.2 0.2 1 Fig.6.6-(c)
10 0.5 0.3 0.3 0.2 0.2 1 Fig.6.7-(c)
10 0.5 0.3 0.3 0.2 0.2 1 Fig.6.8-(c)

where hj,t is the filter coefficients of the neighbors of the ith node, and βj are the

coefficients of the high-pass filter. The neighborhood is defined by the high-pass

filter. Both ℓ1 and ℓ2 norms can be used as in TV based spatial constraint and

temporal constraint cases. Projection onto this set is not the same as the TV

case, however they are similar in nature.

We tested the LMS based ATC, entropic projection based ATC, and the TV

and FV based versions of Algorithm 1 using four different node topologies. The

amount of interaction between the nodes of the multi-node test networks is a

correlation matrix A. The entries αi,j of A corresponds to the effect of the jth

node at the combination stage of the ith node. For example, when we want to

calculate the filter coefficients h1,t of node-1 from intermediate filter coefficients

φj,t at time t in an ATC based diffusion adaptation problems, the corresponding

combination equation at time t is

h1,t =
∑

j

α1,jφj,t. (6.25)

It should also be mentioned that the rows of the correlation matrix A must add

up to one.

The topologies and their corresponding node correlation matrices are shown in

Figures 6.5(b)-(a), 6.6(b)-(a), 6.8(b)-(a), 6.8(b)-(a), respectively. We tested each

node topology under seven different noise models. These noise models consist of

ε-contaminated Gaussian noise with 6 different parameter sets (rows 1-6 in Table

6.3) and white Gaussian noise. The parameters of the white Gaussian output

noise σ2
d,i for each node in the network is given in Table 6.2.
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Table 6.3: ε-contaminated Gaussian noise parameters in the simulations
Noise No ε γ

1 0.01 100
2 0.01 50
3 0.1 100
4 0.05 50
5 0.01 10
6 0.05 100

7 (WGN) 0 N.A.

We selected βj = −1/2 in (6.24), which corresponds to the high pass filter with

coefficient [−1/2, 1,−1/2]. We only consider the FV scheme in spatial adaptation

stage. In the FV scheme that we implemented, a node can only cooperate with the

closest two nodes in its one-hop-neighborhood. One important implementation

detail about the FV scheme that we used in our tests is about that we have

to maintain a scanning order of the nodes during the implementation. When we

process the node i, the impulse response of node i−1 has already been calculated.

On the other hand, this is not the case for node i+1. Therefore, we use the filter

coefficients of i+1st node from time instant t−1 instead of using its intermediate

filter coefficients. As a result, the new spatial constrain becomes

||hi,t −

(

1

2
hi−1,t +

1

2
hi+1,t−1

)

|| < εs, i = 1 . . .K (6.26)

in our experiments. The last implementation detail that we need to mention is

that, we selected εs = εt = 0.5 throughout the experiments.

The bounds εs, and εt are correlated with the noise level. They should be

selected such that they should block the effects due to impulsive component of

the ε-contaminated Gaussian noise. Since, in our tests, we select the original

node-filter coefficients (hi) from an uniform distribution between 0 and 1, we

arbitrarily set εs, and εt in that range. In our simulation we used εs = εt = 0.5

bound, which correspond to 10% variation in each filter coefficient. We did not

make any assumptions about the noise level. If the noise levels are known, more

educated guesses can be made for εs, and εt.
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Figures 6.5-(c), 6.6-(c), 6.8-(c), 6.8-(c) are obtained by testing the respective

topologies under ε-contaminated Gaussian noise with parameters given in the

first row of Table 6.3. We use (6.15) to generate the ε-contaminated Gaussian

noise. In all cases, the entropic projection based method achieves lower EMSE

values compared to the LMS based ATC algorithm under ε-contaminated noise.

In general, the FV based diffusion adaptation algorithm achieved the best EMSE

results in such cases. The node correlation in the network topology given in Fig.

6.7 is very similar to the FV based diffusion adaptation. Even in that case, the

other algorithms could not achieve the EMSE level of the FV algorithm. The node

correlation in the network topology in Fig. 6.8 is similar to TV based diffusion

adaptation model. In that case, TV achieved better results than both LMS and

entropic projection based algorithms.

In the second set of experiments, we tested the performance of the algorithm

under white Gaussian noise. As shown in the previous section, the entropic pro-

jection based algorithm achieves slightly worse results compared to the LMS based

ATC algorithm. As shown in Figs. 6.5-(d), 6.6-(d), 6.8-(d), 6.8-(d), entropic pro-

jection based algorithm catches the EMSE level of the LMS based algorithm,

however, the convergence speed of the entropic projection based algorithm is

slow. Under white Gaussian noise, the best performance is achieved by the LMS

based ATC algorithm.

We conducted another series of experiments using different ε-contaminated

Gaussian noise parameters, given in Table 6.3. We could not present graphical

results for these test due to lack of space. In Table 6.4, we present the EMSE

levels that each algorithm achieved after 2000 iterations. In most of the cases FV

based algorithm achieved the best results under ε-contaminated Gaussian noise.

However, under noise model 5 in Table 6.3, LMS based ATC achieved better

results than FV. In this case the γ value, which is the variance of the impulsive

component, is small and the ε values is high. Therefore this noise model is much

like a mixture of two ordinary white Gaussian noises. Due to this reason, the

LMS based ATC performed better in this case.

As a final test, we embed entropic projection based adaptation into the FV
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based version of Algorithm 1. In this case, the LMS based update stage is replaced

by the entropic projection operation. In the experiment, we used the topology in

Fig. 6.7 under ε-contaminated noise, whose parameters are as given in the first

row of Table 6.3. As shown in Fig. 6.9 entropic projection based version of the

algorithm leads to slightly better EMSE results, and faster convergence rates, at

the expense of increased computational complexity.

In this section, we present two new diffusion adaptation algorithms for coop-

erative multi-node networks. We first integrate the modified entropy functional

based, entropic projection operator into the adaptation stage of the ATC and

CTA schemes. As the modified entropy functional approximates the ℓ1 norm, en-

tropic projection operator based algorithm turns out to be more robust against the

effects of heavy-tailed impulsive noise. We tested the proposed adaptation scheme

using various multi-node cooperative networks under ε-contaminated gaussian

noise, and it turns out better EMSE results compared to the LMS based ATC

and CTA schemes.

In the second part of the section, we introduced TV, and FV based combi-

nation stages, which can be used both with LMS, and Entropic projection based

adaptation stages. We redefine the whole diffusion adaptation problem as a mini-

mization problem and use TV and FV based regularization terms to define a new

combination stage. Since, both the proposed adaptation and the combination

stages are composed of closed and convex constraint sets, it became possible to

solve the diffusion adaptation problem by performing successive projections on

these constraint sets. The experimental results indicate that the proposed FV

based scheme gives the best perfomance among a group of algorithms includ-

ing LMS and Entropic projection based ATC schemes as well as the TV based

approach.
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Figure 6.5: (a) Correlation between the nodes (A) in the network topology shown
in (b). EMSE comparison between two node topologies under (c) ε-contaminated
Gaussian (first row in Table 6.3), and (d) white Gaussian noise (seventh row in
Table 6.3). The proposed robust methods produce better EMSE results under
ε-contaminated Gaussian noise.
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Nodes 1 2 3 4 5
1 0.5 0.25 0.25 0 0
2 0.25 0.5 0.25 0 0
3 0.15 0.15 0.5 0.1 0.1
4 0 0 0.125 0.5 0.375
5 0 0 0.125 0.375 0.5
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Figure 6.6: (a) Correlation between the nodes (A) in the network topology shown
in (b). EMSE comparison between five node topologies under (c) ε-contaminated
Gaussian (first row in Table 6.3), and (d) white Gaussian noise (seventh row in
Table 6.3). The proposed robust methods produce better EMSE results under
ε-contaminated Gaussian noise.
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Figure 6.7: (a) Correlation between the nodes (A) in the network topology shown
in (b). EMSE comparison between five node topologies under (c) ε-contaminated
Gaussian (first row in Table 6.3), and (d) white Gaussian noise (seventh row in
Table 6.3). The proposed robust methods produce better EMSE results under
ε-contaminated Gaussian noise.
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Figure 6.8: (a) Correlation between the nodes (A) in the network topology shown
in (b). EMSE comparison between five node topologies under (c) ε-contaminated
Gaussian (first row in Table 6.3), and (d) white Gaussian noise (seventh row in
Table 6.3). The proposed robust methods produce better EMSE results under
ε-contaminated Gaussian noise.
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Figure 6.9: EMSE comparison between LMS and Entropic projection based adap-
tation schemes in Algorithm 1. Node topology shown in Fig. 6.7 (b) under ε-
contaminated Gaussian, is used in the experiment. The noise parameters are
given in Tables 6.1 and 6.3
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Table 6.4: EMSE comparison for different topologies under various noise modes
that are given in Table 6.3

Noise Average
Model 1 2 3 4 5 6 (1-6) 7

Topology in
Fig 6.5

LMS based ATC -25 -31 -15 -24 -44 -18 -26.17 -45
Entropy -26 -32 -16 -26 -45 -19 -27.33 -45.5

TV -29 -31.5 -20 -25 -39 -23 -27.92 -40.5
FV -35.5 -36.5 -27.5 -30 -40 -30.5 -33.33 -40.5

Topology in
Fig 6.6

LMS based ATC -30 -36.5 -20 -28.5 -48 -22 -30.83 -50
Entropy -30.5 -37.5 -17.5 -29.5 -49 -22 -31 -50.5

TV -30 -32.5 -19.5 -25 -39 -22 -28 -40.5
FV -35.5 -37.5 -27.5 -31.5 -40 -30 -33.67 -40.5

Topology in
Fig. 6.7

LMS based ATC -30 -35.5 -20 -39 -48 -23.5 -32.67 -50
Entropy -31 -37.5 -18 -30 -49 -22.5 -31.33 -50.5

TV -30 -32.5 -19.5 -35.5 -39 -23.5 -30 -40.5
FV -36 -37.5 -27.5 -32 -40 -30.5 -33.92 -40.5

Topology in
Fig 6.8

LMS based ATC -25 -32 -13 -24.5 -43 -16.5 -25.67 -45
Entropy -26 -35 -17 -26 -39 -19.5 -27.08 -46.5

TV -29.5 -32.5 -19.5 -25 -40 -22.5 -28.17 -41.5
FV -36 -37.5 -28 -32 -44.5 -30 -34.67 -41.5
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Chapter 7

CONCLUSIONS

In many signal processing problems, it is possible to have blurred, noisy and/or

irregularly sampled versions of a signal or an image. The inverse problem of

restoring the original signal or image is studied in this thesis. It is assumed that

the signal is sparse in some transform domain such as Fourier, DCT or wavelet

domain. This means that the signal or image can be accurately represented with

some large valued transform coefficients. This assumption has also been used in

transform domain digital waveform coding since 1960’s. In this thesis, inverse

signal processing methods are developed based on sparsity and interval convex

programming.

Inverse signal processing problems are solved by minimizing the ℓ1 norm or

the Total Variation (TV) based cost functions in the literature. In this thesis, a

modified entropy functional approximating the absolute value function is defined.

This functional is also used to approximate the ℓ1 norm, which is the most widely

used cost function in sparse signal processing problems. The modified entropy

functional is continuous, differentiable and convex. As a result a globally con-

vergent iterative compressive sensing (CS) method using the modified entropy

functional is developed. This method is computationally superior to other CS

algorithms because it divides the large inverse problem into smaller problems de-

fined by the rows of the CS measurement matrix. At each step of the algorithm a

D-projection is performed on a hyperplane defined by a row of the measurement
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matrix. In this way it is possible to solve very large CS problems. Moreover the

solution can be updated online, if a new measurement comes.

Total Variation (TV) based cost functions became recently popular in inverse

signal processing problems using sparsity assumption. We are able to solve the

TV based cost functions using Bregman’s interval convex programming methods

and projection onto convex sets (POCS) theory. Using TV based cost function,

a locally adaptive TV denoising method is developed. The main feature of the

method is that it can relax the TV based cost bound when there is an edge in the

local analysis window. In this way, it is possible to achieve smoothing the image

without blurring the edges.

We generalized the TV concept to Filtered Variation approach by replacing

the differencing operator with a discrete-time high-pass filter. This allows us to

use filters according to the frequency content of the signal, which is more or less

available in some problems.

In this thesis, we also developed two new diffusion adaptation algorithms for

cooperative multi-node networks. The first algorithm uses the modified entropy

functional as the cost functional and the projection operator based on this func-

tional defines an adaptation strategy. We then integrate the entropic projection

operator into the adaptation stage of the problem. According to the experi-

mental results, the new adaptation scheme turns out to be more effective than

the ordinary LMS algorithm against impulsive noise, such as the ǫ-contaminated

Gaussian noise. Since the entropy functional approximates the ℓ1 norm, it is more

robust against the effects of heavy tailed impulsive noise.

In the second class of algorithms, the TV and FV concepts are used to de-

velop diffusion adaptation methods in multi-node networks. By minimizing the

TV and FV cost functions, new adaptation and spatial combination stage equa-

tions in both temporal and spatial dimensions are obtained. In [4], the spatial

combination stage was achieved using alpha-blending. Here the relation between

the alpha-blending and the similarity between the filters of the neighboring nodes

or the similarity between the old set of filter coefficients and the new ones are

established using closed and convex sets, which limit the deviation between the
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node filters.

Since the adaptation, temporal and spatial combination constraints that are

used in the diffusion adaptation problem are closed and convex sets, it is possible

to solve the individual subproblems in an iterative manner by performing succes-

sive orthogonal projections onto the sets. Moreover, this approach enables the

users to insert any other convex and closed constraint into the diffusion adap-

tation problem, according to their needs. It is possible to embed the entropy

functional based algorithm into adaptation stage if the TV and FV based frame-

works. The experimental results indicate that the new class of the algorithms

perform similar to ATC and CTA methods [4] under white Gaussian noise. They

perform better under ε-contaminated Gaussian noise. As in the original ATC

and CTA frameworks, when the cooperation between the nodes increases, the

performance of the proposed algorithms also increases.

Sparsity assumption is a reasonable assumption and it helps the signal inter-

polation, reconstruction, and restoration process in inverse problems. However,

it sometimes oversimplifies or oversmoothes the signal because practical signals

cannot be represented with a couple of transform domain coefficients in general.

For example in transform domain signal, image, and video coding, the signal is

divided into blocks and some smooth blocks are represented with a few trans-

form domain coefficients. On the other hand, some block contain high-frequency

information and the coder may even have to use all the transform domain co-

efficients to represent the block. In signal interpolation problem, a signal with

sharp edge is used as an example. Interpolators using the sparsity assumption

do not produce any good interpolation results. To solve this problem, transition

band and stopband concepts from the discrete-time filtering theory is used. In

this way, the reconstructed signal is allowed to have some high-frequency coeffi-

cients in transform domain. This led to better interpolation results than sparsity

assumption.
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APPENDIX A

Proof of Convergence of the

Iterative Algorithm

The problem described in (2.2) and(2.8) is a convex programming problem

min
s∈H

g(s)

subject to θi.s = yi for i = 1, 2, ...,M ,
(A.1)

where g(s) is a strictly convex and differentiable cost function in R
N , H is

the intersection of M hyperplanes θi.s = yi, and s ∈ R
N . In [13], Bregman

solved the convex optimization problem (A.1) using D-Projections. He proved

in [13](Theorem 3) that starting from an initial point s0 = 0, and making suc-

cessive D-projections on convex hyperplanes as defined by θi.s = yi (Chapter 3),

converges to the solution of the convex optimization problem, provided that H is

non empty.

Statement 1: The function g(x) = (|x|+ 1
e
) log(|x|+ 1

e
) + 1

e
is continuously

differentiable in R.

Proof: The derivative of the cost function g(x) can be computed using the
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chain rule. The first derivative of the cost function g(x) is

g′(x) = sign(x)

[

log

(

|x|+
1

e

)

+ 1

]

, (A.2)

which is a continuous function in R. The plot of the function is shown in Figure

A.1. Extension to R
N is straightforward.

Statement 2: The function g(x) is a strictly convex function.

Proof: The second derivative of the cost function g(x) is

g′′(x) =
1

|x|+ 1
e

> 0, (A.3)

where g(x) > 0, ∀x ∈ R The one-dimensional plot of the function is shown in

Figure A.1. The cost function is strictly convex because its second derivative is

non-negative ∀x ∈ R.

The problem described in (4.19) is also a convex programming problem. The

convergence of this optimization problem can also be proven using Theorem 4

of [13] because g(s) is a strictly convex and differentiable function in R
N .

Figure A.1: The plot of the entropic cost function, its first, and second derivatives.
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APPENDIX B

Proof of Convexity of the

Filtered Variation Constraints

B.1 ℓ1 Filtered Variation Bound

The set

C1 =

{

x :
N−1
∑

k=0

|H [k]X [k]| ≤ ε1

}

(B.1)

defines the ℓ1 filtered variation bound constraint set. Let’s assume that X1,X2 ∈

C1. To prove the convexity of set C1, we need to check if

X3 = αX1 + (1− α)X2, ∀α ∈ [0, 1] (B.2)

satisfies the following condition

N−1
∑

k=0

|H [k]X3[k]| ≤ ε1. (B.3)

Using (B.2), one can rewrite (B.3) as follows

|H [k]X3[k]| =

N−1
∑

k=0

|H [k](αX1[k] + (1− α)X2[k]))| (B.4)

=
N−1
∑

k=0

|(αH [k]X1[k]) + ((1− α)H [k]X2[k]))| (B.5)
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. Using triangle inequality in (B.5)

|H [k]X3[k]| ≤
N−1
∑

k=0

α |(H [k]X1[k])|+ (1− α) |(H [k]X2[k]))| (B.6)

=α

(

N−1
∑

k=0

|(H [k]X1[k])|

)

+ (1− α)

(

N−1
∑

k=0

|(H [k]X2[k])|

)

(B.7)

≤ε1. (B.8)

Therefore, C1 is a convex constraint set.

B.2 Time and Space Domain Local Variation

Bounds

Let’s consider the time and space domain local variation bound

C2 =

{

x :

∣

∣

∣

∣

∣

l
∑

i=−l

h[i]x[n − i]

∣

∣

∣

∣

∣

≤ P

}

, (B.9)

Let’s assume that x1,x2 ∈ C2. We would like to check if x3 = αx1 + (1− α)x2 ∈

C2, ∀α ∈ [0, 1]. If this condition is satisfied, then C2 defines a convex constraint

set.

For the convexity of C2 set, x3 should satisfy the condition (B.9) as

∣

∣

∣

∣

∣

l
∑

i=−l

h[i]x3[n− i]

∣

∣

∣

∣

∣

≤ P. (B.10)

It is possible to rewrite (B.10) as

∣

∣

∣

∣

∣

l
∑

i=−l

h[i]x3[n− i]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

l
∑

i=−l

h[i](αx1[n− i] + (1− α)x2[n− i]

∣

∣

∣

∣

∣

. (B.11)

=

∣

∣

∣

∣

∣

l
∑

i=−l

(αh[i]x1[n− i]) + ((1− α)h[i]x2[n− i])

∣

∣

∣

∣

∣

. (B.12)
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. Using triangle inequality in (B.12)

≤α

∣

∣

∣

∣

∣

l
∑

i=−l

(h[i]x1[n− i])

∣

∣

∣

∣

∣

+ (1− α)

∣

∣

∣

∣

∣

l
∑

i=−l

(h[i]x2[n− i])

∣

∣

∣

∣

∣

. (B.13)

≤P (B.14)

Therefore, C2 is a convex constraint.

B.3 Bound on High Frequency Energy

Let’s consider the bound on high frequency energy

C3 =

{

x :

N−k0
∑

k=k0

|X [k]|2 ≤ ε3

}

. (B.15)

Let’s assume that X1,X2 ∈ C3. we would like to check if X3 = αX1+(1−α)X2 ∈

S3, ∀α ∈ [0, 1]. If this condition is satisfied, then C3 is a convex constraint set.

For the convexity of C3 set, X3 should satisfy the condition (B.15) as

N−k0
∑

k=k0

|X3[k]|
2 ≤ ε3 (B.16)

It is possible to rewrite (B.16) as

N−k0
∑

k=k0

|X3[k]|
2 =

N−k0
∑

k=k0

|αX1[k] + (1− α)X2[k]|
2 (B.17)

Since |.|2 is a convex function, using definition of convexity of a function given in

(3.1) of [139], one can rewrite (B.17) as

N−k0
∑

k=k0

|αX1[k] + (1− α)X2[k]|
2 ≤α

(

N−k0
∑

k=k0

|X1[k]

)

+ (1− α)

(

N−k0
∑

k=k0

|X2[k]

)

(B.18)

≤ε3 (B.19)

Therefore, C3 is a convex constraint.
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B.4 Sample Value Locality Constraint

The Sample Value Locality Constraint is defined as

C7 = {x : |x[n]− y[n]| < δ} , (B.20)

where x[n] and y[n] are nth samples from the signals x, and y. Let’s assume that

for x1[n], x2[n] ∈ C7. Let’s assume that x1[n], x2[n] ∈ C7. We would like to check

if x3[n] = αx1[n] + (1 − α)x2[n] ∈ C7, ∀α ∈ [0, 1]. If this condition is satisfied,

then C7 is a convex constraint set.

Therefore, one needs to check if the following condition holds:

|x3[n]− y[n]| << δ. (B.21)

It is possible to rewrite (B.21) as

|x3[n]− y[n]| = |αx1[n] + (1− α)x2[n]− y[n]| (B.22)

= |α(x1[n]− y[n]) + (1− α)(x2[n]− y[n])| (B.23)

= α |(x1[n]− y[n]) |+(1− α)| (x2[n]− y[n])| (B.24)

≤ δ (B.25)

Therefore, C7 is a convex constraint.
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