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ABSTRACT

Pyroelectric Infrared (PIR) Sensor Based Event Detection

Emin Birey Soyer

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Enis Çetin

July 2009

Pyroelectric Infra-red (PIR) sensors have been extensively used in indoor and

outdoor applications as they are low cost, easy to use and widely available. PIR

sensors respond to IR radiating objects moving in its viewing range. The current

sensors give an output of logical one when they detect a hot object’s motion and

a logical zero when there is no moving hot object. In this method, only moving

objects can be detected and the rate of false alarm is high.

New types of PIR sensors are more sophisticated and more capable. They

have a lower false alarm ratio compared to classical ones. Although they can

distinguish pets and humans, again they can only be used for detection of hot

object motions due to the limitations caused by the usage of the simple compara-

tor structure inside. This structure is unalterable, not flexible for development,

and not suitable for implementing algorithms.

A new approach is developed to use PIR sensors by modifying the sensor

circuitry. Instead of directly using the output of a classical PIR sensor, an ana-

log signal is extracted from the PIR output and it is sampled. As a result,

intelligent signal processing algorithms can be developed using the discrete-time

sensor signal. In this way, it is possible to develop human, pet and flame de-

tection methods. It is also possible to find the direction of moving objects and
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estimate their distances from the sensor. Furthermore, the path of a moving

target can be estimated using a PIR sensor array.

We focus on object and event classification using sampled PIR sensor sig-

nals. Pet, human and flame detection methods are comparatively investigated.

Different human motion events are modeled and classifed using Hidden Markov

Models (HMM) and Conditional Gaussian Mixture Models (CGMMs). The sam-

pled data is wavelet transformed for feature extraction and then fed into HMMs

for analysis. The final decision is reached according to the Markov Model pro-

ducing the highest probability. Experimental results demonstrate the reliability

of the proposed HMM based decision and event classification algorithm.

Keywords: Pyroelectric infra-red (PIR) sensor, flame detection, pet detection,

human detection, event detection, wavelet transform, Hidden Markov Models,

Conditional Gaussian Mixture Models, classification, Bayesian Statistics, Least-

Mean-Square (LMS) algorithm
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ÖZET

PİROELEKTRİK KIZILBERİSİ ALGILAYICI TABANLI OLAY

TESPİTİ

Emin Birey Soyer

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Enis Çetin

Temmuz 2009

Piroelektrik Kızılötesi (PİK) algılayıcılar, ucuz, kolay kullanımlı ve kolay bulu-

nabilir olduklarından dolayı, iç ve dış mekan uygulamalarında çoğunlukla kul-

lanılmaktadır. PIR sensörler, gördükleri alanda hareket eden ve kızılötesi yayın

yapan nesnelere tepki verir. Mevcut algılayıcılar, hareket eden sıcak bir nesne

gördüklerinde mantıksal bir, hiç bir şey görmediklerinde ise mantıksal sıfır verir-

ler. Bu yöntemle, sadece hareket eden nesneler tespit edilir ve hata oranı

yüksektir.

Yeni nesil PİK algılayıcılar daha karmaşık ve daha yeteneklidir. Bilinen

diğerlerine göre daha düşük bir hata oranına sahiptirler. İnsanlarla hayvanları

birbirinden ayırabilmesine rağmen, basit bir kıyaslayıcı devresinin kullanılması

nedeniyle, sadece hareket eden sıcak nesneleri algılamak için kullanılır. Bu yapı

değiştirilemez, geliştirmek için esnek değildir ve algoritmaları uyumlamak için

elverişli değildir.

Bu çalışmada, bu algılayıcıların kullanımı için yeni bir yaklaşım gerçekleştiril-

miştir. Mevcut PİK algılayıcıların çıkışlarını doğrudan kullanmak yerine,

piyasada bulunan PİK algılayıcılar uyarlanarak kullanılmıştır. Bu yapı sa-

yesinde, PİK algılayıcıların örneksel çıkışları örneklenmiştir. Ayrıca, bu örnek-
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lere herhangi bir algoritma uygulanabilir. Bu yöntemle, insan, hayvan ve a-

lev tespiti yapılabilmektedir. Yön bulma, yaklaşık mesafe bulma algoritmaları

geliştirilebilmektedir. Ayrıca, algılayıcı dizisi kullanılarak hareket eden hedefin

iz tespiti yapılabilir.

Bu çalışmada, PİK algılayıcıların örneklenmiş çıkışları kullanılarak, nesne

ve olay ayrımı üzerine yoğunlaşılmıştır. Hayvan, insan ve alev tespiti,

karşılıklı olarak araştırılmıştır. Farklı insan hareketleri modellenmiştir ve

sınıflandırılmıştır. Hesaplama maliyetini az tutmak için, Hızlı Fourier Dönüşümü

(HFD) yöntemleri kullanılmamıştır. Onun yerine, farklı nesneleri tanımlamak

için bir raslantısal yöntem, Saklı Markov Modeli (SMM), kullanılmıştır ve

farklı olayları tanımlamak için Koşullu Gauss Karışım Modelleri (KGKM) kul-

lanılmıştır. Örneklenen veri, nitelik çıkartma için dalgacık dönüşümüne sürülür

ve sonra analiz için SMM’ye verilir. Herbir SMM’de üretilen olasılıklardan yüksek

olanına göre karar verilir. Farklı senaryolar içeren deneysel testler, önerilen SMM

yönteminin güvenilirliğini göstermektedir.

Anahtar Kelimeler: piro-elektrik kızılberisi algılayıcı, alev tespiti, hayvan tespiti,

insan tespiti, olay tespiti, dalgacık dönüşümü, saklı Markov modelleri, koşullu

Gauss karışım modelleri, sınıflandırma, Bayes sayımlamaları, en küçük-ortalama-

kare algoritması
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Chapter 1

INTRODUCTION

A Pyroelectric Infrared (PIR) Sensor is a pyroelectric device that can sense in-

frared (IR) radiation changes within its viewing range. In other words, these

sensors are sensitive to moving objects radiating IR light. A PIR sensor creates

temporary electric potential whenever a change of IR radiation occurs on the

viewing range of the sensor, but the electric potential generated is very small in

amplitude and must be amplified significantly. That is because PIR sensors can

not be used alone, instead they become one of the key components of a passive

infrared device (PID) with some other circuitry. The basic structure of a PID

contains four main structures: A Fresnel lens, a PIR sensor, an amplifier cir-

cuitry and a comparator plus time delayer circuitry. Structural details are given

in Chapter 2.

Fresnel lens focuses IR radiation on PIR sensor and PIR sensor measures the

change in the IR rate and creates an electric potential difference corresponding

to the variation in the IR radiation. However, this potential difference is very

small and must be amplified without introducing noise. The amplifier circuitry

aims to have a large gain for the sensor signal and surpress the ambient noise

at the same time. So, generally a two stage bandpass amplifier is used. The

amplified sensor signal is then compared with a threshold. If the signal stays
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CHAPTER 1. INTRODUCTION 2

in the range determined by the threshold then it is assumed that no motion is

observed, otherwise it is assumed that there is a moving target. This threshold

based approach may generate false alarms. Therefore ordinary PIR sensors are

simple and give an output of logical one when they detect a motion and a logical

zero when there is no moving object within their viewing ranges.

The PIDs are low-cost, easy to use and widely available commercially. These

practical features made them used in many indoor and outdoor applications in-

cluding the security systems. However, as described above, simple PID structures

may produce false alarms. For example, a PID located at the outside of a build-

ing can produce alarms to pets, or even wind. So, high false alarm rates reduce

their reliability. That is because in most security applications they are used as

an assistant device of a surveillance system. Another type of application seen

in the market is to use an array of sensors to create a sensor network structure

[39, 40] and analyze the total data taken from each sensor. This increases the

success and reliability of the system.

In order to increase false alarm immunity and add extra features, there exist

some research articles and patents on PIDs in the literature [5]-[11]. Some of

these patents deal with the hardware structure inside the PID [5, 8, 9, 11], and

noise reduction [7]. These describe better PIDs compared to commertially avail-

able ordinary ones. The new generation PIDs try to improve the basic structure

of old ones by modifying the comparator circuitry. For example, patented auto-

pulse signal processing and dual-edge processing systems are described in [4].

One of the major problems in the new generation PIDs is due to the analog

hardware implementation of the algorithms. The analog hardware implementa-

tions are not flexible to implement sophisticated algorithms or to switch from

an algorithm to another to adapt to changing environmental parameters. So the

current analog hardware based approach is not a good solution because of its

limited nature.

In this thesis, a new approach is developed to use PIR sensors by modifying
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the PID sensor circuitry with the aim of extracting a discrete-time signal. In-

stead of directly using the output of a classical PIR sensor, an analog signal is

extracted from the PIR output and it is sampled. As a result, intelligent signal

processing algorithms can be developed using the discrete-time sensor signal. In

this way, it is possible to develop human, pet, and flame detection methods. It is

also possible to find the direction of moving objects and estimate their distance

from the sensor. Furthermore, the path of a moving target can be estimated

using a PIR sensor array.

In this thesis, we also focus on object and event classification using sampled

PIR sensor signals. Pet, human and flame detections are comparatively investi-

gated. Different human motion events are modeled and classified using Hidden

Markov Models (HMM) and Conditional Gaussian Mixture Models (CGMMs).

In the proposed approach wavelets or sub-band analysis are used in dynamic

texture modeling. This leads to computationally effcient algorithms for texture

feature analysis, because computing wavelet coefficients is an order-(N) type op-

eration. So, in order to keep the computational cost low, FFT methods are not

implemented. Instead, a stochastic method, Hidden Markov Model (HMM), is

used to characterize different objects and Conditional Gaussian Mixture Mod-

els (CGMMs) is used for different events characerization. The sampled data is

wavelet transformed for feature extraction and then fed into HMMs for analysis.

A decision is reached according to the Markov Model producing the highest prob-

ability. Experimental results demonstrate the reliability of the proposed HMM

based decision and event classification algorithm.

In Chapter 2, detailed information about the PIR sensors and PIDs are pro-

vided. Also sensor structure used in this work and the modifications done on

the structure is presented in that chapter. In Chapter 3, the pet and human

detection method is decribed and false alarm immunity of the PIDs is analyzed.

Markov Models characterizing human and pet behaviour use wavelet domain sig-

nals instead of regular sensor signal to achieve robustness against sensor drift.
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In Chapter 4, a flame detection method based on flame flicker behavior is devel-

oped. HMM for flames are estimated and tested with different human motion

and flame test data. In Chapter 5, five type human motion events are classi-

fied using conditional Gaussian mixture models. These models are tested with

different test data and the results are presented.



Chapter 2

Pyroelectric Infrared (PIR)

Sensors

A Pyroelectric Infrared (PIR) sensor is a device that can sense the infrared (IR)

light within its viewing range. This sensor is a passive device that simply mea-

sures the changes in the IR levels emitted by surrounding objects. Since this

device is a passive measuring device it is also called “Passive Infrared” sensor.

PIR will detect any object emitting IR radiation, heat or changes in the back-

ground IR level. IR radiating objects include humans, animals, vehicles and

wind. The sensor by itself has a short range of approximately 1m maximum

[1] but using a lens that focuses the IR radiation on the sensor we can increase

the sensing range to 30m [1]. Therefore the PIDs are more suitable for indoor

applications or short range outdoor applications.

Since the sensor responds to the IR changes within its viewing range, it is

generally used for motion detection. A PIR based motion detector (usually called

PID, for Passive Infrared Detector) uses this PIR sensor with some additional

electronics circuitry for detecting motion. A typical PID sensor gives a logical

zero when there is no motion or to the background IR level, and gives a logical

one when it detects a hot body motion. A PIR sensor becomes useful when it

5



CHAPTER 2. PYROELECTRIC INFRARED (PIR) SENSORS 6

is used in PID. In this thesis, both the PIR sensor and the PID will be studied,

because of this reason.

The PID sensors are widely used especially in indoor and short range outdoor

applications directly or as an assistance of a video camera, since they are very

cheap, easy to use and widely available commercially. Besides, in some applica-

tions, a PID sensor network is build in order to cover a large area or an entire

building for monitoring purposes [40]. Although they are used widely in indoor

and outdoor applications, their application areas are limited. Security systems,

robotics, burglar alarms, visitor acknowledgement, light switch control and in-

telligent toys, etc. are some of example applications.

As mentioned above, a classical PID sensor is sensitive to the IR radiation,

so their response is affected by some factors like the ambient temperature, hu-

midity, moving object’s speed, direction of motion, distance to the sensor and

the moving object’s body itself. Since PID gives a logical one or a logical zero as

its output, the amplitude of the response isn’t affected, but the duration and the

frequency of the response change by these factors. The response of the sensor

is weakened by the increasing temperature and humidity. As the humidity in

the air increases, the IR radiation is absorbed and attenuated more. A good

example is the increasing heat absorption of the atmosphere when the weather

is cloudy. Also high humidity causes vapor on the surface of the sensor which

recedes IR radiation captured by the sensor. When the ambient temperature

becomes high, e.g. above 40 degrees, or very low, e.g. below zero, the sensitivity

of the PIR decreases [3]. Also sudden temperature changes can create a moving

object response, in other words a false alarm, and if this sudden temperature

change situation continues, the sensor response can be unstable, e.g. output

continuously switches between one and zero. This unstable condition can be ob-

served especially in windy weathers. On the other hand, when the body of the

moving object is big, or when the object gets close to the sensor, PIR responds

faster and the duration of the response becomes longer. When the moving target
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is too small or too far from the sensor, the sensor can ignore it or gives no re-

sponse or gives a very short response. In addition when the moving object emits

more heat, a longer response will be given by the sensor. Moreover the direction

of motion and speed of the moving object creates a different non-linear charac-

teristic at the sensor’s response. As the speed of the moving object increases,

the duration of the response decreases but when the object moves very slowly,

there is a possibility for the sensor not to distinguish it from the background.

Since the viewing range of the sensor is limited by approximately 140 degrees

in azimuth and 125 degrees in elevation [3], the faster object spends less time

in the viewing range and this causes shorter response duration. Moreover, the

direction of the moving object gives different results. If we think of some basic

movement directions such as, parallel to the sensor or towards the sensor and

obtain the results, we get different type of responses. The parallel response is

simply like increasing sinusoidal behavior at the beginning and then decreasing

sinusoidal behavior but when we deal with a direction toward to the sensor we

get a more complicated sinusoidal response.

Since a typical PID sensor only responds to the motion of any object that

emits IR radiation, independent of the source of motion, it is hard to distinguish

different objects from each other. That leads an increasing false alarm ratio be-

cause instead of a real target like human, PID sensor can respond to different

sources such as animals or even a wind. On the other hand, PID sensor basically

gives a one for the motion and a zero for no-motion, so it becomes very hard for

the user to understand the source of motion, in other words we cannot distin-

guish different objects by looking at the output of the PID sensor. This limits

the usage area of these sensors.

If we focus on these problems, we can see that in the commercial market

some methods such as temperature compensation, auto pulse signal processing

and some patents [4]-[11] were developed in order to increase the robustness and

decrease the false alarm ratio. But these methods deal with just some current
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problems that are observed for classical PIDs, not developing the current vision.

In this theses, PID sensors will be analyzed in three categories: first, second

and third generation. Briefly, the first generation sensors are very simple struc-

tured sensors composed of a sensing stage, then an amplifier stage and finally a

comparator stage. These type of sensors are not robust and precise compared to

second and third generations. Second generation sensors have a similar structure

to the first generation, but they have additional comparator stage for increased

robustness and precision. The false alarm rate in the second generation is lower

compared to that in the first generation. The third generation sensors, developed

by us, have sensing and amplifying stages that are modified versions of those in

the second generation. They also have a microcontroller with an ADC stage

that converts the analog signals to digital instead of comparing with a defined

threshold as seen in the first and second generations. This last stage implements

signal processing on these samples. More detailed information is given in the

Chapter 2, Chapter 3, Chapter 4.

In this work, the first study is to increase the information that a PID sensor

gives so that a well developed signal processing can be implemented to distinguish

different events. At this point a new approach for PIR sensor signal processing

is developed. A classical second generation PID sensor is modified for extracting

all possible information from the PID sensor. This work is also applicable for

the first generation PID sensors and explained in detail in the third generation

sensor part.

2.1 IR Radiation

Infrared (IR) radiation is a type of electromagnetic radiation. Infrared light has

a longer wavelength than visible light. The infrared has a wavelength of 750 nm

to 100 µm. The infrared radiation is invisible to humans but we can feel it as

heat. Infrared region can further be divided into sub-regions as follows:
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• Near Infrared (NIR): 750 nm to 1.5 µm.

• Short Wavelength Infrared (SWIR): 1.5 µm to 3 µm.

• Mid Wavelength Infrared (MWIR): 3 µm to 8 µm.

• Long Wavelength Infrared (LWIR): 8 µm to 15 µm.

• Far Infrared (FIR): Longer than 15 µm.

The MWIR and LWIR is known as the thermal infrared. All objects emit what

is known as black body radiation (thermal radiation). This is emitted from the

surface of an object which is due to the its temperature. Human body at normal

body temperature radiates IR approximately at wavelengths around 9.4 µm.

2.2 Pyroelectricity

Pyroelectricity (from the Greek pyr, fire, and electricity) is the ability of certain

materials to generate a temporary electrical potential when they are heated or

cooled. It is a migration of positive and negative charge to opposite ends of a

crystal’s polar axis as a result of a change in temperature, and this causes an

electrical polarization. This polarization change gives rise to a temporary electric

potential, although this disappears after the dielectric relaxation time.

Pyroelectricity can be visualized as one side of a triangle, where each corner

represents energy states in the crystal: kinetic, electrical and thermal energy.

The side between kinetic and electrical corners represents the pyroelectric effect

and produces no kinetic energy.

This effect is first observed in quartzs. If a crystal develops a positive charge

on one face during heating, it will develop a negative charge on the same face

during cooling. This ability of the crystals is used for detecting infrared radiation.
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2.3 Theory of Operation

A typical PID (1st generation) is generally composed of four blocks shown in

Figure 2.1. The first block is for optical focusing of the IR radiation onto the

Figure 2.1: A typical PID sensor block schema.

PIR sensor. For this purpose, Fresnel lenses are preferred since they have lower

thickness. The second block is the sensing block. This block contains a PIR

sensor for detecting the IR radiation. PIR sensors have IR filters mounted on

them so that they respond to the optimal IR frequency range of interest. The

third block is the amplifier stage, which amplifies the output signal of the PIR

sensor. A typical amplifier block is composed of a two stage amplifier in which

each stage has a gain of approximately 100. The last stage is the comparator

stage that gives the output voltage of either 5V for logic one or 0V for logic zero.

Beyond these blocks, second generation PID sensors have extra comparator

circuitry for increasing the robustness of the sensor. For the third generation

PID sensor we place an ADC and a microcontroller instead of a comparator

block. These blocks and the first, second, third generation sensors are explained

in detail in the next sections.
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2.4 PID Sensor Module Configuration

As previously pointed, a typical PID sensor module is composed of four basic

structures:

• A fresnel lens,

• a PIR sensor,

• the amplifier circuitry and

• the comparator circuitry.

2.4.1 Fresnel Lens

A Fresnel lens is a plano convex lens that has been collapsed on itself as in Figure

2.2 to form a flat lens that retains its optical characteristics but is much smaller

in thickness and therefore has less absorption loss.

Figure 2.2: A plano convex lens and fresnel lens, adopted from [2].

The Fresnel lens is made of an infrared transmitting material that has an

IR transmission range of 8 µm to 14 µm that is most sensitive to human body

radiation. It is designed to have its grooves facing the IR sensing element so
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that a smooth surface is presented to subject side of the lens which is usually

the outside of an enclosure that houses the sensor [1].

The lens element is round with a diameter of 1 inch and has a flange that is

1.5 inches square. This flange is used for mounting the lens in a suitable frame

or enclosure. Mounting can best and most easily be done with strips of scotch

tape. Silicon rubber adhesive can also be used to form a more waterproof seal

[1].

A typical Fresnel lens for the first generation PID sensor is FL65 [2]. FL65

has a focal length of 0.65 inches from the lens to the sensing element. It has been

determined by experiment to have a field of view of approximately 10 degrees

when used with a PIR325 PIR sensor. Figure 2.3 shows the lens geometry.

Figure 2.3: Typical fresnel lens dimensions, adopted from [2].

Another issue of a Fresnel lens is the pattern. The pattern affects the perfor-

mance of the sensor directly. In order to increase the performance and coverage,

different geometries are applied. An example can be seen in Figure 2.4.



CHAPTER 2. PYROELECTRIC INFRARED (PIR) SENSORS 13

Figure 2.4: An example pattern for D203S model PID, adopted from [3].

Different types of PID sensors have different patterns based on their usage.

Some example patterns are shown in Figure 2.5.

Figure 2.5: Three types of PIDs and their patterns, adopted from [4].

In the second generation PID sensors coverage is increased, since our sensors

are modified versions of the second generation PID sensors, we have the same
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pattern shown in Figure 2.6.

Figure 2.6: The pattern of the PID sensor used in this study, adopted from [12].

2.4.2 PIR Sensors

PIR sensor is an electronic device that generates an electric charge when exposed

to infrared radiation. As the name implies this sensor is made of pyroelectric

materials such as crystals. When the amount of infrared radiation that is strik-

ing to the crystal changes, the amount of charge also changes. This charge is

sensed and converted to a voltage level via a FET transistor that is build inside

the sensor. The sensor is sensitive over a wide spectrum. The sensor and the

equivalent circuit is shown in Figure 2.7.
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Figure 2.7: A PIR sensor and its equivalent circuit, adopted from [3].

In order to limit the sensitivity range of the sensor, there is an IR filter at

the top. This filter is generally designed for a bandwidth of 5.5 µm to 15 µm. A

typical spectral response of this filter is shown in Figure 2.8.

Figure 2.8: IR filter spectral response, adopted from [3].

Dual compensated sensing elements are applied to suppress the interference

resulting from temperature variation. As a result, the operating stability of

the sensor is greatly improved. In such a configuration, the PIR measurements

cancel each other so that the average temperature of the field of view is removed

from the electrical signal; an increase of IR energy across the entire sensor is



CHAPTER 2. PYROELECTRIC INFRARED (PIR) SENSORS 16

self-cancelling and will not trigger the device. This allows the device to resist

false indications of change in the event of being exposed to flashes of light or

field-wide illumination. (Continuous bright light could still saturate the sensor

materials and render the sensor unable to register further information.) At the

same time, this differential arrangement minimizes common-mode interference,

allowing the device to resist triggering due to nearby electric fields. An example

drawing for the PIR response to a moving body is shown in Figure 2.9

Figure 2.9: An example drawing of PIR response to a moving body, adopted

from [2].

However, a differential pair of sensors cannot measure temperature in this

configuration and therefore this configuration is specialized for motion detectors.
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2.4.3 Amplifier Circuitry

Since PIR sensor’s output is very low, it should be well amplified. This part of

a first generation PID sensor is a two stage amplifier in which each stage has a

gain of approximately 100, corresponding to a total gain of 10000. Because there

is a high gain, amplifiers with band-pass characteristics are used. An example of

this two stage is shown in the red box of Figure 2.10.

Figure 2.10: A simple PID amplifier circuitry, adopted from [2].

As mentioned in the previous chapter, the output of a PIR sensor has a

low frequency tendency around DC to 10Hz [2]. So the frequency response of

the amplifier block tends to remove or reduce the high frequency components

while amplifying the interested frequency band in the output signal of a PIR.

The frequency response of the first and the second amplifier outputs are plotted

below for the circuit shown in Figure 2.10.
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Figure 2.11: Frequency response of the amplifier circuit.

In Figure 2.12, the output of the first and second stages for a walking person

is shown.

Figure 2.12: The output of the the first stage (shown in blue, CH2) and second

stage (shown in orange, CH1) amplifier.
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At the output of the amplifier block we have an analog signal. In order to

get a meaningful output in the first and second generation sensors, this analog

signal is compared with thresholds, but the third generation sensor just samples

this analog signal instead of comparing with thresholds. So that after sampling,

we move into digital domain instead of analog domain, and that leads us to im-

plement signal processing.

Typical signals seen at the output of the amplifier block, when there is ob-

served motion and a background or no-motion, are shown in Figures 2.13 and

2.14, respectively.

Figure 2.13: Walking man at 2m distance to PIR sensor. The signal is sampled

with 50Hz.
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Figure 2.14: Background signal sampled with 50 Hz.

2.4.4 Comparator

As mentioned above the amplifier stage gives an amplified analog signal of PIR

sensor output. In order to get meaningful information from PID this analog signal

is compared with thresholds. If the signal stays between two threshold values

then the signal belongs to ambient, and there is no motion. So the comparators

give an output of 0V . On the other hand, if there is a motion the signal tends to

have higher amplitude. This time, signal passes beyond the threshold values and

one of the comparators give an output of 5V . This points that the sensor has

detected a motion. The comparator circuitry of a first generation PID sensor is

shown in the red box of Figure 2.15.
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Figure 2.15: A simple PID comparator circuitry, adopted from [2].

Here the threshold values are chosen about ± 200mV around the half of

supply voltage (Vcc) because when there is no-motion signal shows a DC behavior

that has amplitude of Vcc/2. But when there is a weak motion even far from the

sensor, the signal starts to behave like a sinusoid with an offset voltage of Vcc/2

and an amplitude depending on the source distance, source IR radiation quantity.

So in order to capture even weak motions these threshold values are kept small

enough. But this also increases the false alarm ratio. Comparator outputs can

drive a delay circuit so that the PID can give a outputs with longer durations

instead of giving short pulses. In Figure 2.16 and Figure 2.17, the output of the

second stage amplifier and comparators are given for the motion and background

cases, respectively.
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Figure 2.16: The second stage amplifier (shown in orange, CH1) and comparator

(shown in blue, CH2) output for walking man at 2m.

Figure 2.17: The second stage amplifier (shown in orange, CH1) and comparator

(shown in blue, CH2) output for background.

The direction of the motion can be detected due to the PIR sensor nature.

Thus, a different configuration of the comparators can tell us the direction of the

motion. A general configuration is shown in Figure 2.18.
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Figure 2.18: A simple PID comparator circuitry that can give the direction of

motion, adopted from [2].

Here the comparator outputs are separated so that if we have a positive edge

we get 5V from the top comparator and 0V from the bottom comparator, and

we get an opposite behavior for the negative edge.

In the second generation sensors, the comparator part is more complicated

in order to decrease the false alarm ratio.

2.5 First Generation (Ordinary) Sensors

This is the most primitive PID type. This type of sensors have the highest false

alarm ratios and cannot distinguish the moving targets. A typical configuration

was shown in Figure 2.1 and an example circuit schema is presented in Figure

2.19.
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Figure 2.19: A typical PID circuitry, adopted from [2].

2.6 Second Generation Sensors

The second generation sensors are the modified version of the first type. Except

PIR sensor part, the rest of the PID is modified. Fresnel lens geometry is changed

for higher sensitivity and wider range. The amplifier part is modified for low

noise. The comparator part is ‘re-created’ and new extra circuitry is added

in order to implement patented algorithms like auto pulse signal processing,

temperature compensation. By these changes, the PID becomes more robust

and the false alarm ratio is decreased. These PIDs can also distinguish moving

targets like a human or an animal and responds accordingly.

2.7 Third Generation Sensors

Although the second generation sensors are developed versions of the first gen-

eration, they have some absence in the false alarm ratios and their potential was
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not used efficiently. In the second generation of PID, the analog signal of the

amplifier is converted to pulses and the decisions are made according to these

pulses. This is not very useful for applying different algorithms and limits the

abilities that we can develop. Instead of creating pulses, in the third generation

PIDs, an ADC conversion is implemented and a sampled version of the amplifiers

analog output is obtained. In Figure 2.20 a typical diagram is shown.

Figure 2.20: Typical third generation sensor circuitry.

We sample the analog input and feed the data into a microcontroller based

structure so that we can either implement algorithms in the microprocessor or

bypass the data to a PC via serial communication. In this way, we can use dif-

ferent techniques to analyze the sensor output and create models for different

targets.

Another major problem for the second generation sensors is the saturation

problem. When we have a strong IR source, the amplifiers get saturated. This

distorts the output signals of the amplifiers and prevents us to characterize dif-

ferent events in detail. The amplifier gain is adjusted so that a human walking

at a distance of 1m in front of the sensor will not saturate the amplifiers.



Chapter 3

Pet Detection

In this chapter, signals produced only by PIR sensor is analyzed to distinguish

pet and human. Since a PID responds to the heat change in the ambient indepen-

dent from the source, all of the IR radiating sources whether they are necessary

or not, are detected and this causes too many useless information and increases

false alarm ratios especially in safety and security applications. In order to de-

crease the false alarm ratios, distinguishing the IR radiating sources, such as a

human and pet, from each other becomes important.

Detection of a person in an unsupervised area is a practical problem with ap-

plications in safety and security areas including supportive home environments.

Intelligent homes will have the capability of monitoring activities of their occu-

pants and automatically provide assistance to elderly people and young children

using a multitude of sensors in the near future. A good example is given in [14].

On the other hand, computer vision-based systems may provide effective and

complimentary solutions for motion detection and pattern recognition [15]. Al-

though visual systems are highly successful for detection and recognition, cameras

must be placed in several parts of the house including bathrooms. Even if the

video data is neither stored nor sent to an outside center for further processing,

many people may find such a practice disturbing. This solution is not a cost

26
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effective solution since we need lots of camera with an image processing unit.

However, an intelligent PIR sensor can be a cost effective solution and since

it is used everywhere people would not be iritated. So the problem becomes

distinguishing different IR sources.

In this work, signals produced by PIR sensor are processed in the wavelet

domain. It is experimentally observed that the wavelet transform domain signal

processing provides better results than the time-domain signal processing be-

cause wavelets capture sudden changes in the signal and ignore stationary parts

of the signal. For our purposes, it is important to detect sudden changes rather

than drifts or low frequency variations. Feature parameters are extracted from

wavelet signals in fixed-length data windows and they are used in Hidden Markov

Models (HMMs) which are trained according to possible human being and pet

activities.

3.1 Data Processing

As indicated in Chapter 1, commercially available PIR sensors produce binary

outputs; however, we capture a continuous amplitude analog signal indicating

the strength of the received signal. The corresponding circuit is shown in Figure

2.10. The samples are taken from “OUT2” output point in Figure 2.10 and the

sampling rate is 50Hz.

The strength of the received signal from a PIR sensor increases by the size

of the IR radiating source within its viewing range. Also the distance of the

source has an important role at the output signal amplitude and shape. The

effects of these two factors can be easily observed at the output. Briefly, a bigger

object moving at a certain distance creates higher amplitude at the output then

a smaller one moving at the same distance. So the PIR signal amplitudes for a

person expected to be higher than the amplitudes due to the motion of a pet

as pets are smaller than human beings for a given distance. On the other hand,
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Figure 3.1: PIR sensor output signals recorded at a distance of 2m for (a) a
human being, and (b) a pet.

the amplitude decreases with increasing distance. So a simple amplitude-based

classification is not enough for distinguishing, instead we should characterize dif-

ferent source signals. A typical PIR sensor signal for a person and a pet is shown

in Figure 3.1.

When we focus on other characteristics of a PIR signal, we observe that the

frequency of the signal is also changing with the speed of the IR radiating source

within its viewing range. This can be another distinguishing factor since pets

move faster than the human beings. This can be observed in the sensor output

signal, as shown in Figure 3.1.

There is a bias offset in the PIR sensor output signal, which changes accord-

ing to the room temperature. Wavelet transform of the PIR signal removes this

bias. Let x[n] be a sampled version of the signal coming out of a PIR sensor.

Wavelet coefficients obtained from a single stage subband decomposition, w[k],

corresponding to [12.5Hz, 25Hz], frequency information of the original sensor

output signal x[n] are evaluated with the integer arithmetic high-pass filter, cor-

responding to Lagrange wavelets [28] followed by decimation. The used highpass

filter is the filter bank of a biorthogonal wavelet transform used in the analysis

[28]. The lowpass filter has the transfer function

Hl(z) =
1

2
+

1

4
(z−1 + z1) (3.1)
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and the corresponding highpass filter has the transfer function

Hh(z) =
1

2
− 1

4
(z−1 + z1). (3.2)

In this case, the wavelet transform coefficients, w[k], are directly used as a

feature parameter in an HMM-based classification. Two triple state HMMs are

used for classifying human, pet and background. In Figure 3.2 an example is

shown.

Figure 3.2: Three-state Markov models used to represent (a) ‘pet’ and (b) ‘hu-

man’ classes, respectively.

The wavelet results of the PIR sensor are analyzed in small windows that

have a size of 50 sample and corresponds to 1sec. Every window is fed into

HMM and classified as human, pet or background. If the wavelet of the output

of the PIR sensor stays below a predefined threshold, i.e. Tp1, then this indicates

that the sensor stays in S0 state. If nth window stays in S0 state completely,

this means that there is no motion for the nth window. Tp1 is chosen according

to experimental results. When the wavelet of a background is analyzed, the

coefficients tend to stay below 0.8 but when there is an observed motion, one
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or more coefficients pass over this value. A background data and the wavelet

transform is shown in Figure 3.3 .

Figure 3.3: Background data and its wavelet transform in absolute value (high-

frequency component of the filter bank).

Next, we define a non-negative threshold Tp2 in the wavelet domain. If there is

a motion for the nth window, at least one of the corresponding wavelet coefficients

satisfies |w[k]| ≥ Tp1. If any wavelet coefficient satisfies Tp1 ≤ |w[k]| ≤ Tp2,

then we obtain state S1; otherwise, state S2, i.e. |w[k]| ≥ Tp2, is attained as

the current state. Wavelet signal captures the high frequency information in

the signal. Therefore, we expect that there will be more transitions occurring

between states due to the motion of a pet. Tp2 is chosen as twice of the Tp1 value,

because the motion of a pet has a small effect on PIR, so that choosing a bigger

Tp2 value will decrease robustness for the frequency seperation. Especially when
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the human is far from the sensor, the effect is decreasing and has a close behavior

of a pet in terms of amplitude. Therefore, frequency content becomes important.

This is observed by increasing transitions between states in our HMM. Choosing

a higher Tp2 value will cause loss of information in the state transitions.

For the training of the HMMs, the state transition probabilities for human

being and pet models are estimated from 50 consecutive wavelet coefficients

covering a time frame of one second. During the classification phase, a state

history signal consisting of 50 consecutive wavelet coefficients is computed from

the received sensor signal. This state sequence is fed to the human being and pet

models in running windows. The model yielding highest probability is determined

as the result of the analysis of PIR sensor data.

3.2 Experimental Results

In our experiments we record pet and human motions at a distance of 2 m−5 m

to the sensor. For pet sequences, a cat is moved in front of the sensor and we

record the output signals. For the human sequences, we record walking and run-

ning person sequences. The person within the viewing range of the PIR sensor

walks or runs on a straight line which is tangent to the circle with a radius of

2 m− 5 m and the sensor being at the center. The HMM models for PIR sensor

are trained with three two-minute-long recordings of background, walking signals

of a single person and random activities of a pet. The results are shown in Table

3.1.
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Table 3.1: The results with 108 Human, 120 pet, 120 background test sequences.

The system is connected to a PC and gives 0 for background, 1 for detection of a

pet and 2 for detection of a human within the viewing range of the PIR sensor.

Test Cases
Number of

Sequences

Number of

Pet Detection

Number of

Human Detection

Number of Test

Signals

Classified as

BackgroundHuman Test

Sequences
108 0 83 25

Pet Test

Sequences
120 110 0 10

Background

Test Sequences
120 0 0 120

A total of 348 recordings containing human, pet and background activities

are used for testing. We have no HMM corresponding to the background case

and no background test sequences classified as a human or a pet. This is due to

the non-continuous motion of the human and pet. As shown in Figures 3.4 and

3.5, there are some time gaps in the motion; thus, if the time gap is long enough,

sensor adapts itself to this new ambient scenario and assumes it as background.
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Figure 3.4: Time gaps of a pet motion that can be mis-classified as background.

Figure 3.5: Time gaps of a human motion that can be mis-classified as back-

ground.

Since these gaps are longer for human motion compared to the pet motion,

we have more false alarms in human data classified as background. This is
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also observed when a human stands in front of the PIR sensor without moving

because when a constant IR radiating object moves, it creates a heat change

in the ambient and the PIR responds to this change. When this object stays

constant, the sensors respond as background temperature is changed and adapts

itself to this new background. These false alarms are actually not important

because the human or the pet is actually detected in spite of occasional false

alarms.

3.3 Conclusion

In this chapter, a method for distinguishing a pet, a human inside an intelligent

environment/building equipped with a PIR sensor is proposed. Wavelet based

features are extracted from PIR sensor outputs and are fed to two HMMs for

human and pet. Sensor recordings containing various human and pet motions

are used for training the HMMs corresponding to human and pet models. Clas-

sification is done by the results of the probabilities of each HMMs. This sensor

can be used as an assistant to a camera based system or can be complementary

to a multitude sensor system [14]. The proposed system can further be improved

to handle false alarm sources like barking dogs, wind, slamming doors and so

forth. This can be achieved by training models similar to ones defined in this

chapter. It can also be used to increase the robustness of camera-based systems

inside and outside of an intelligent building.



Chapter 4

Flame Detection

In this chapter, a flame detection system based on wavelet analysis of PIR sensor

signals is described. Since PIR sensor is sensitive to IR radiation, PIR sensor re-

sponds to flames as well as it does to any other moving hot object. The problem

is to find some special characteristics that belong to flames for separating them

from other objects and these must be robust enough to have a low false alarm

ratio.

Conventional point smoke and fire detectors typically detect the presence of

certain particles generated by smoke and fire by ionization or photometry. An

important weakness of point detectors is that the smoke has to reach the sensor.

This may take significant amount of time to produce an alarm and therefore it

is not possible to use them in open spaces or large rooms. The main advantage

of PIR based sensor system for fire detection over the conventional smoke detec-

tors is the ability to monitor large rooms and spaces because they analyze the

infrared light reflected from hot objects or fire flames to reach a decision. When

we apply different algorithms on the same sensor it is possible to detect different

events. So instead of using different type sensors, we can just use PIDs.

Moreover, there are also some disadvantages of the system over conventional

smoke detectors. One of them occurs because of the complex layout of any room.

35
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In order to get robust results, PIR sensor should directly see the flames. If the

flame occurs behind a big object, the probability of detection decreases since

the object masks the IR radiation. In addition, different PID sensors can give

same characteristic signals for the same event but with different amplitudes. The

reason is because of the differences of the structure. Even this, can be observed

between same types of 2 PIDs. The algorithm should be calibrated for every

sensor. Another disadvantage is the test case. We implement some tests for dif-

ferent situations but more detailed tests should be applied for different ambient

conditions with different situations in order to get more trustable and robust

system.

It is reported that turbulent flames of an uncontrolled fire flicker with a fre-

quency of around 10 Hz [16, 17]. Recently developed video based fire detection

schemes also take advantage of this fact by detecting periodic high-frequency

behavior in flame colored moving pixels [18] - [20]. Actually, instantaneous flame

flicker frequency is not constant and it varies in time. As reported in [31] and [29],

flame flicker behavior is a wide-band activity covering 1 Hz to 13 Hz. Therefore,

a Markov model based modeling of flame flicker process produces more robust

performance compared to frequency domain based methods. Markov models are

extensively used in speech recognition systems and in computer vision applica-

tions [21]-[24]. In [29], several experiments on the relationship between burner

size and flame flicker frequency are presented. Recent research on pyro-IR based

combustion monitoring includes [30] where monitoring system using an array of

PIR detectors is realized.

A regular camera or typical IR flame sensors have a fire detection range of

30 meters. This is due to the fact that flicker in flames cannot be or sensed from

longer distances. Therefore, PIR based systems provide a cost-effective solution

to the fire detection problem in relatively large rooms as the unit cost of a camera

based system or a regular IR sensor based system is in the order of one thousand

dollars.
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We also used wavelet domain signal processing, which provides robustness

against sensor signal drift due to temperature variations in the observed area.

Regular temperature changes due to hot plates and radiators are slow variations

compared to the moving objects and flames. Since wavelet sub-signals of a wave-

form are high-pass and band-pass in nature they do not get affected by the slow

variations.

Events are classified into two different classes in this approach. The first

class represents fire events, on the other hand, the second class represents non-

fire events. Since PIR sensor circuits are designed for detecting the movement of

hot objects, we include regular human motion events such as walking or running

in the non-fire event class.

The PIR sensor can be considered as a single-pixel camera without loss of

generality. Therefore, the proposed PIR based fire detection algorithm is ob-

tained methods developed in Chapter 2.

Data acquisition and the PIR systems are described in the next Section. The

proposed algorithm and the experiments are presented in Sections 4.2 and 4.3,

respectively.

4.1 Data Acquisition

In order to get the digital samples from PID, digital sampling structure described

in the first Chapter is used. In addition, for capturing the flame flicker process

the analog signal is sampled with a sampling frequency of fs = 50 Hz because

the highest flame flicker frequency is 13 Hz [17] and fs = 50 Hz is well above

2 × 13 Hz. In Figure 4.1, a frequency distribution plot corresponding to a

flickering flame of an uncontrolled fire is shown. It is clear that the sampling

frequency of 50 Hz is sufficient.

Typical sampled signal for no activity case using 8 bit quantization is shown

in Figure 4.2.
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Figure 4.1: Flame flicker spectrum distribution.

Figure 4.2: Background signal sampled with 50Hz.

Other typical received signals from a moving person, shaking hands and flick-

ering fire are presented in Figures 4.3, 4.4 and 4.5.
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Figure 4.3: Walking man at 5 m.

Figure 4.4: Flame at 5 m.
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Figure 4.5: Shaking hands at 1 m.

The strength of the received signal from a PIR sensor increases when there

is motion due to a hot body within its viewing range. However, the motion may

be due to human motion taking place in front of the sensors or flickering flame.

As can be noticed from the figures, shaking hands and flame flicker have a close

behaviour. In this chapter the PIR sensor data is used to distinguish the flame

flicker from the motion of a human being like running or walking. Typically the

PIR signal frequency of oscillation for a flickering flame is higher than that of PIR

signals caused by a moving hot body. In order to keep the computational cost

of the detection mechanism low, we decided to use Lagrange filters for obtaining

the wavelet transform coefficients as features instead of using a direct frequency

approach, such as FFT based methods. On the other hand in the next section

it is shown that wavelet results are more distinguisable compared to fft results.
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4.2 Sensor Data Processing and HMMs

The PIR signals processed by using FFT methods, are shown in Figures 4.6 and

4.7.

Figure 4.6: Single sided amplitude spectrum for background and man walking

at 5 m.
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Figure 4.7: Single sided amplitude spectrum for flames at 5 m and shaking hands

at 1 m.

And the corresponding results obtained by using wavelets (explained in detail

in this section) are shown in Figures 4.8 and 4.9.
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Figure 4.8: Absolute value of wavelet transform results for background and man

walking at 5 m (high-frequency component of the filter bank).

Figure 4.9: Absolute value of wavelet transform results for flames at 5 m and

shaking hands at 1 m (high-frequency component of the filter bank).
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As seen from the figures, the wavelet results have better characteristics for

classification. Also the computational cost is lower when we use wavelets. The

rest of this secion mentions about the methods used in this work.

There is a bias in the PIR sensor output signal which changes according to

the room temperature. This variaton is very slow compared to normal events.

Wavelet transform of the PIR signal removes this bias. Let x[n] be a sampled

version of the signal coming out of a PIR sensor. Wavelet coefficients obtained af-

ter a single stage subband decomposition, w[k], corresponding to [12.5Hz, 25Hz]

frequency band information of the original sensor output signal x[n] are evaluated

with an integer arithmetic high-pass filter corresponding to Lagrange wavelets

[28] followed by decimation. The filter bank of a biorthogonal wavelet transform

is used in the analysis. The lowpass filter has the transfer function:

Hl(z) =
1

2
+

1

4
(z−1 + z1) (4.1)

and the corresponding high-pass filter has the transfer function

Hh(z) =
1

2
− 1

4
(z−1 + z1). (4.2)

The term HMM is defined as “hidden-state” Markov model in Rabiner [24].

However, the term HMM is also used in a relaxed manner when several Markov

models are used to classify events. The term “hidden” refers to the fact that the

model producing the observed data is unknown. An HMM based classification

is carried out for fire detection. Two three-state Markov models are used to

represent fire and non-fire events (cf. Figure 4.10).
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Figure 4.10: HMM models used for classifying fire and non-fire events.

In these Markov models, state S1 corresponds to no activity within the view-

ing range of the PIR sensor. The system remains in state S1 as long as there

is not any significant activity, which means that the absolute value of the cur-

rent wavelet coefficient, |w[k]|, is below a non-negative threshold T1. A second

threshold T2 is also defined in wavelet domain which determines the state tran-

sitions between S2 and S3. If T1 < |w[k]| < T2, then state S2 is attained. In

case of |w[k]| > T2, state S3 is acquired.

The first step of the HMM based analysis consists of dividing the wavelet co-

efficient sequences in windows of 25 samples. For each window, a corresponding

state transition sequence is determined. An example state transition sequence of

size 5 may look like

C = (S2, S1, S3, S2, S1). (4.3)

Since the wavelet signal captures the high frequency information in the signal,

we expect that there will be more transitions occurring between states when

monitoring fire compared to human motion.
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4.2.1 Threshold Estimation for State Transitions

The thresholds T1 and T2 in the wavelet domain determine the state transition

probabilities for a given sensor signal. In the training step, the task is to find

optimal values for T1 and T2. Given (T1, T2) and ground-truth fire and non-fire

wavelet training sequences, it is possible to calculate the transition probabilities

for each class. Let aij denote the transition probabilities for the ‘fire’ class and

bij denote the transition probabilities for the ‘non-fire’ class.

The decision about the class affiliation of a state transition sequence C of size

L is done by calculating the two joint probabilities Pa(C) and Pb(C) correspond-

ing to fire and non-fire classes, respectively:

Pa(C) =
∏

i

pa(Ci+1|Ci) =
∏

i

aCi,Ci+1
(4.4)

and

Pb(C) =
∏

i

pb(Ci+1|Ci) =
∏

i

bCi,Ci+1
(4.5)

where pa(Ci+1|Ci) = aCi,Ci+1
, and pb(Ci+1|Ci) =

∏
i bCi,Ci+1

, and i = 1, ..., L .

In case of Pa(C) > ξPb(C), for ξ > 0, the class affiliation of state transition

sequence C will be declared as ‘fire’, otherwise it is declared as ‘non-fire’. In our

implementation, we take ξ = 1 without loss of generality.

Given Na training sequences A1, ..., ANa from ‘fire’ class and Nb training se-

quences B1, ..., BNb
from ‘non-fire’ class, the task of the training step is to find

the tuple (T1, T2) which maximizes the dissimilarity D = (Sa − Sb)
2, where

Sa =
∑

i Pa(Bi) and Sb =
∑

i Pb(Ai).

This means that for each given tuple (T1, T2), there is a specific value of the

dissimilarity D, so that D is a function of (T1, T2)

D = D(T1, T2). (4.6)
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Figure 4.11 shows a typical plot of the dissimilarity function D(T1, T2). It

can be seen from this figure that the cost function D is multi-modal and and non-

differentiable. Therefore, we solve this maximization problem using a Genetic

Algorithm (GA) having the objective function D(T1, T2).

Figure 4.11: A typical plot of the dissimilarity function D(T1, T2). It is multi-

modal and non-differentiable.

For the training of the HMMs, the state transition probabilities for human

motion and flame are estimated from 250 consecutive wavelet coefficients cover-

ing a time frame of 10 seconds.

During the classification phase a state history signal consisting of 50 con-

secutive wavelet coefficients are computed from the received sensor signal. This

state sequence is fed to fire and non-fire models in running windows. The model

yielding highest probability is determined as the result of the analysis of PIR
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sensor data.

For flame sequences, the transition probabilities aij’s should be high and close

to each other due to random nature of uncontrolled fire. On the other hand, tran-

sition probabilities should be small in constant temperature moving bodies like a

walking person because there is no change or little change in PIR signal values.

Hence, we expect a higher probability for b00 than any other b value in the non-

fire model which corresponds to higher probability of being in S1. The state S2

provides hysteresis and it prevents sudden transitions from S1 to S3 or vice versa.

4.3 Experimental Results

The analog output signal is sampled with a sampling frequency of 50 Hz and

quantized at 8 bits. Real-time analysis and classification methods are imple-

mented with C++ running on a PC. Digitized output signal is fed to the PC via

RS-232 serial port.

The detection range of a PIR sensor based system is 9meters but this is

enough to cover most rooms with high ceilings. In our experiments we record

fire and non-fire sequences at a distance of 5 m to the sensor. For fire sequences,

we burn paper and alcohol, and record the output signals. For the non-fire se-

quences, we record walking and running person sequences. The person within

the viewing range of the PIR sensor walks or runs on a straight line which is

tangent to the circle with a radius of 5 m and the sensor being at the center.

The training set consists of 90 fire and 90 non-fire recordings with durations

varying between three to four seconds. The test set for fire class is 198 and that of

non-fire set is 558. Our method successfully detects fire for 195 of the sequences

in the fire test set. It does not trigger fire alarm for any of the sequences in the

non-fire test set. This is presented in Table 4.3.
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Table 4.1: Results with 198 fire, 588 non-fire test sequences. The system triggers
an alarm when fire is detected within the viewing range of the PIR sensor.

No. of Sequences No. of False Alarms No. of Alarms
Fire Test Sequences 198 3 195

Non-Fire Test Sequences 588 0 0

The false negative alarms, 3 out of 198 fire test sequences, are issued for the

recordings where a man was also within the viewing range of the sensor along

with a fire close to diminish inside a waste-bin. The test setting where false

alarms are issued is presented in Figure 4.12.

Figure 4.12: The PIR sensor is encircled. The fire is close to die out completely.

A man is also within the viewing range of the sensor. No false alarm is issued

for this case.

4.4 Summary

A method for flame detection using PIR sensors is proposed. Analog signal from

a PIR sensor is sampled with a sampling frequency of 50 Hz and quantized with

8 bits. Single level wavelet coefficients of the output signal are used as feature
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vectors for flame detection.

PIR sensor output recordings containing various human movements and

flames of paper and alcohol fire at a range of 5 m are used for training the

HMMs corresponding to different events. Thresholds for defining the states of

HMMs are estimated using an evolutionary algorithm, since the underlying cost

function to be minimized has proved to be multi-modal and non-differentiable.

Flame detection results of the proposed algorithm show that the single-pixel as-

sumption for PIR sensor proves to be a correct one.

We show that low-cost PIR sensors that are commonly used as indoor and

outdoor motion detectors, can be utilized as fire sensors when coupled with ap-

propriate processing. The main advantage of a PIR based fire detection system

over conventional particle sensors is its ability to detect the presence of fire from

a distance that results in a faster response time.
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Human Motion Event Detection

Intelligent rooms with audio, video and low cost PIR sensors will have the capa-

bility of monitoring activities of their occupants and automatically provide as-

sistance to elderly people and young children using a multitude of sensors in the

near future [23]. Other applications include surveillance, information retrieval,

indexing and security monitoring. Examples for video based event detection ap-

plications are described in [17, 18, 20, 24]. In [23], the motion of a suddenly

falling person is distinguished using a multitude of sensors including PIR sen-

sors. In [25], an array of PIR sensors is used to detect direction of motion and

the number of people passing. In this chapter, an approach based on PIR sensor

data for human action monitoring is proposed.

As mentioned, we remove the simple comparator part of the PID to gather

the 1-D signal directly generated by the PIR sensor. Due to the fact that 3-

D information is mapped to 1-D, the question arises whether it is possible to

uniquely determine the class from the sensor data or whether there is too much

ambiguity to do so. In the proposed approach, although there is ambiguity, it is

possible to detect several different motion events successfully.

The proposed system uses the wavelet transform for feature extraction from

the raw 1-D PIR signal. It is experimentally observed that the wavelet transform

51
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domain signal processing provides better results than the time-domain signal

processing, because wavelets capture sudden changes in the signal and ignore

stationary parts of the signal. For our purposes, it is important to detect sud-

den changes rather than drifts or low frequency variations. Using the feature

sequence, a Conditional Gaussian Mixture Model classifier is employed for the

classification.

5.1 PIR Event Detection System

In our system, the circuitry used for sampling analog data is same as the one

mentioned in Chapter 3.

5.1.1 Event Classes

Six different event classes are considered. The motion events differ in direction

of motion (tangential and radial), the distance relative to the PIR sensor (2 m

and 5 m) and also in the speed of the motion (walk and run). In Figure 5.1 the

tangential and radial motion is characterized.
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Figure 5.1: Tangential (a) and radial motion (b) relative to a PIR sensor.

The following 5 motion events are cosidered. WT2: tangential walk at 2 m

distance, WT5: tangential walk at 5 m distance, RT5: tangential run at 5 m

distance, WR2-5: radial walk from 2 m to 5 m distance, WR5-2: radial walk

from 5 m to 2 m distance.

5.1.2 Feature Extraction using Wavelet Domain Process-

ing

As can be seen from Figure 5.2, there is bias in the PIR sensor output signal

which changes according to the room temperature. Wavelet transform of the

PIR signal removes this bias.
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Figure 5.2: Background (a) and its wavelet transform (b).

Let xn be a sampled version of the signal received from the PIR sensor.

Wavelet coefficients wn obtained by a single stage subband decomposition cor-

respond to [12.5 Hz, 25 Hz] frequency band information of the original sensor

output signal xn. The wavelet coefficients are computed with the integer arith-

metic high-pass filter having the frequency response of

H(ejw) =
1

2
− 1

2
cos(w) (5.1)

corresponding to Lagrange wavelets [28] followed by downsampling.

The resulting wavelet coefficient sequence wk is then further divided into

overlapping windows of size 11 to generate 11 dimensional feature vectors vk as

follows:

vk = (wk−10, wk−9, ..., wk), v ∈ R11. (5.2)
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As a result, a wavelet coefficient sequence of length N generates N − 10 feature

vectors for each data record. These feature vectors are processed by a GMM

classifier which is described in the next subsections.

5.1.3 GMM Training

For each event class, feature vectors vk of corresponding training data sets are

used to estimate the corresponding probability density function (PDF) by GMM

approximation using an Expectation Maximization (EM) algorithm [36, 37]. Re-

sulting PDF’s are then described by weighted sums of Gaussians, respectively,

p(v) =
M∑
j

αjN (v, µj,Σj), (5.3)

with mean µj ε R11 and covariance Σj ε R11×11.

5.1.4 Event Detection

Given an input sample sequence xn, first the feature sequence wk is computed

followed by the forming of feature vectors vk. For each wk, ..., wk−10, the con-

ditional probability density function q(wk|wk−10, ..., wk−1) = q(wk|wk−10:k−1) can

be determined from p, respectively, where wk−10:k−1 ≡ wk−10, ..., wk−1. The aim

is to determine the conditional PDF for the current wk given the preceding 10

values wk−10, wk−9, ..., wk−1 from the available PDF p(vk). The conditional PDF

of interest can be represented as a 1-D conditional GMM (CGMM). From Bayes

rule, we obtain

p(vk) = p(wk, wk−10:k−1)

= q(wk|wk−10:k−1)p(wk−10:k−1)

⇒ q(wk|wk−10:k−1) =
p(v)

p(wk−10:k−1)
. (5.4)
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With the following partitioning of the mean µj and covariance Σj, respectively

µj =

(
µj,a(10× 1)

µj,b(1× 1)

)
Σj =

(
Σj,a(10× 1)Σj,b(1× 1)

Σj,c(1× 1)Σj,d(1× 1)

)
, (5.5)

This means µ̂j and covariances Σ̂j of the CGMM can be determined [32] as

µ̂j = µj,b + Σj,cΣ
−1
j,a(wk−10:k−1 − µj,a) (5.6)

Σ̂j = Σj,d − Σj,cΣ
−1
j,aΣj,b (5.7)

The CGMM can then be written as

q(wk|wk−10:k−1) =
M∑

j=1

αjN (wk, µ̂j, Σ̂j). (5.8)

Given a sequence of wavelet coefficients wk, k = 1, ..., N , the logarithmic likeli-

hood is determined as

L = log

(
N∏

k=10

q(wk|wk−10:k−1)

)

=
N∑

k=10

log(q(wk|wk−10:k−1)). (5.9)

The decision for a certain class ê is done by calculating the logarithmic likelihood

for each class and selecting the one with maximum result

ê = argmaxe{e|Le}, (5.10)

where Le is the logarithmic likelihood generated by the CGMM of class e.

5.2 Experimental Results

In order to verify the classification performance of the proposed approach 50

recordings of motion events were made for each class. Typical signals received

from according motion events are shown in Figure 5.3.
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Figure 5.3: Typical sampled sensor signals for all 6 event classes.

Using leave-one-out cross validation, 49 recordings each were used to train

the GMM repeatedly for each record, having a test set of 50 records for each

event class. Table 5.1 shows the number of Gaussians Me for each trained class

e.

Table 5.1: Number of Gaussians Me of each GMM pe.

Class WT2 WT5 RT5 WR2-5 WR5-2 BG

Me 9 1 6 7 1 1

Table 5.2 shows the classification performance of the proposed approach for

the 6 classes, where Ps is the success probability. The false classifications were

uniform, meaning that an event class was confused with only one other event

class, indicated by ef .

In order to demonstrate which classes are ‘similar’, the cumulative values from

Equation 5.9 are plotted in Figure 5.4. For 6 different motion sequences, one from

each class, all 6 logarithmic likelihoods are plotted. As seen from Figure 5.4 (a),

classes WT2 and WT5 are similar, as they yield similar logarithmic likelihoods.

So, the situation is same for the classes WR2-5 and WR5-2, as seen in Figure

5.4 (e). Another interesting similarity can be found between RT5 and WT2 in
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Table 5.2: Classification performance and confused classes for various motion
events.

Class WT2 WT5 RT5 WR2-5 WR5-2 BG
Ps 1 0.98 0.98 0.96 0.92 1

ef -
WT2 with
probability

0.02

WT2 with
probability

0.02

WR5-2 with
probability

0.04

WR2-5 with
probability

0.08
-

Figure 5.4 (c). This corresponds to the intuitive property that a tangential walk

near the sensor equals in a sense a tangential run on a more distant path. In all

cases, the background event is seperated quite clearly from the other events.

Figure 5.4: Cumulative logarithmic likelihood plots for typical motion sequences:

(a) tangential walk at 2m distance, (b) tangential walk at 5m distance, (c) tan-

gential run at 5m distance, (d) radial walk from 2m to 5m distance, (e) radial

walk from 5m to 2m distance and (f) background signal.
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5.3 Conclusion

The experimental results show that though 3-D information is mapped to 1-D,

it is possible to classify and detect different motion events using a PIR sensor.

However, using just one sensor yields very similar logarithmic likelihoods in most

cases and this could affect the robustness of this approach when using more event

classes than the five presented in this work. The use of two or more sensors could

help increase robustness, since the sensors are low cost and widely available.

As a future work, distance detection and person tracking can be done. By the

use of a sensor network path and distance detecton can be made, an example path

detection is made in [40], but several PIR sensor is used. Instead of the method

used, path detection can be done by fewer PIR sensors using the sturucture given

in this work and instead of output voltage comparison of different sensors, more

developed algorithms such as HMM’s can be used to detect distance of the object

from each sensor and objects path can be extracted from this data.
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Conclusions and Future Work

In this thesis, a new structure expanding the ordinary application range of PIR

sensors is developed. A discrete time signal extraction method from ordinary

PID sensors is developed. Instead of directly using the output of an ordinary

PID, the analog signal of the PIR sensor amplifiers is sampled and digital sig-

nal processing techniques are applied on the discrete-time signal for object and

event classification. An intelligent structure containing a micro-controller with

an ADC (analog-to-digital converter) is added inside of an ordinary PID. In this

way, it is possible to implement some basic algorithms on micro-controller and

get real-time performance or transfer the discrete time signal to PC for more

sophisticated algorithms.

In order to implement algorithms on small micro-controllers HMM based de-

cision engine is used because once they trained offline, the Markov Model based

system makes some simple additions while reaching a decision. Besides, the

computational cost of the proposed decision engine is lower compared to Fourier

domain methods using the FFT algorithm. The feature vectors of the sensor

signal samples are extracted using the orthogonal wavelet transform. The use

of wavelet transform further decreases computational cost because of inherent

downsampling associated with the WT.

60



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 61

Ordinary PIDs have simple structure based on thresholding. Therefore they

suffer from low accuracy, and furthermore they can not seperate a real target,

such as a human from a fake object such as wind or a pet. So, animal or pet

detection in real-time has an important role for robustness and decreasing the

false alarm ratios of classical PIDs.

In Chapter 3, a pet detection method based on wavelet feature extraction is

developed. Three state HMMs are implemented for each object. A pet’s mo-

tion signal is different from the motion model of a human in terms of amplitude

and frequency. Therefore the resulting Markov Model for a pet is different from

the HMM of a human being. A third HMM represent the background or the

ambient noise. This HMM is trained using the PIR sensor signals when there

are no moving objects in the viewing range of the sensor. During the tests the

model probabilities are compared with each other for distinguishing objects from

each other. Furthermore, the human, pet and background models are tested

with different object data and the performance and success rate of each model

is determined.

The PIR sensor provide us another solution to detect flames because fire emits

heat or IR radiation. Ordinary PIDs also respond to flames, but they can not

seperate fire from ordinary human motion and other hot objects. On the other

hand, the PIR sensor signal reflects the flame flicker process and we take ad-

vantage of this fact to develop a fire detector using an intelligent PID equipped

with a microprocessor. This small modification will add extra features to the

currently used PIDs in security area.

In Chapter 4, a PID flame detection method based on wavelet feature ex-

traction is implemented. Similar to the previous case three state HMMs are

implemented. This time the flame flicker process is modeled and it is distin-

guished from diferrent human movements with different speeds and distances

from the PIR sensor. Also, the state threshold values are estimated by an evolu-

tionary algorithm, since the underlying cost function to be minimized has proved
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to be multi-modal and non-differentiable. The algorithm is tested with flames of

paper and alcohol fire at a distance of 5m and with different human movements,

especially with the ones that is observed to have a similar behaviour of a flame

flicker such as hand waving. The test results are promising and tend to have low

false alarm rates.

The PIR sensor response signal is a nonlinear sum of factors dependent on

the direction, speed, distance and the size of the moving object, as well as the

ambient temperature. A typical human movement have all of the above factors.

Especially, in indoor applications, different human motions can be characterized

and classified. The number and the diversity of these events can be increased in

the future. That will lead us to discover new areas such as distance detection

and path finding.

In Chapter 5, a basic human motion event classification scheme is imple-

mented. This is a difficult problem because of the large number of variations in

parameters. However, especially, in indoor applications, different human move-

ments can be characterized and classified. The number and the diversity of these

events can be increased in the future. That will lead us to discover new areas

such as distance detection and path finding using the PID devices. Five differ-

ent human motion events with a background case are classified using a Bayesian

approach employing Conditional Gaussian Mixture Models (CGMM) trained for

each class. These events include running and walking at two predefined distances

with a tangential and a radial direction to the sensor. The models are tested with

various test data and the experimental results indicate that, although the 3-D

information is mapped to 1-D it is possible to classify and detect different mo-

tion events to some extent using a PIR sensor. However, using just one sensor

yields very similar logarithmic likelihoods in most cases and this could affect the

robustness of this approach. Therefore, methods for multiple PIR sensor arrays

should be developed to realize smart rooms and buildings equipped with PIR

sensors.
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As a future work, the use of a PID sensor arrays will be investigated to de-

termine the approximate location and trajectory of objects in a room. It is our

belief that PID sensors will play an important role in smart homes and build-

ings. PID sensor arrays can observe their habitants, they can detect flames, and

provide robust solutions for security applications.

In this thesis, we have developed signal processing algorithms for detection

of various objects and events via PIR sensors. The ideas beyond this work can

be developed further to discover new application areas for PID.



Bibliography

[1] PIR325 Sensor Infrared Motion Detector Manual,

http://www.glolab.com/glmda/GLMDA.pdf,

Glolab Corporation, NY, USA.

[2] PIR 325 Infrared Parts Manual,

http://www.glolab.com/pirparts/pirmanual.pdf,

Glolab Corporation, NY, USA.

[3] D203B, Pyroelectric Infrared Radial Sensor Datasheet,

http://www.micropik.com/PDF/D203B-e.pdf,

PIR SENSOR CO.,LTD..

[4] Paradox, Motion Detectors,

http://www.paradox.com/Documentation/TechnicalPublication/

MOTION-ET04.pdf, Paradox Security Systems, Quebec, Canada.

[5] Shpater, Pinhas, “Passive infrared motion detector and method”, US Patent

6,215,399, November 10,1997.

[6] Shpater, Pinhas, “Infrared motion detection signal sampler”, US Patent

6,111,256, April 10,1997

[7] Shpater, Pinhas, “Motion detection with RFI/EMI protection”, US Patent

5,920,259, November 10,1997.

64



BIBLIOGRAPHY 65

[8] Shpater, Pinhas, “Passive infrared motion detection circuit having four

comparators”, US Patent 5,886,632, November 10,1997.

[9] Shpater, Pinhas, “Doppler shift motion detector with variable power”, US

Patent 5,287,111, August 24,1992.

[10] Hershkovitz, Shmuel, “Apparatus and method for locating boundaries of

detection zones covered by a passive infrared detection system”, US Patent

5,119,069, July 10,1990.

[11] Hershkovitz, Shmuel, “Integrating passive infrared intrusion detector”, US

Patent 5,077,549, July 10,1990.

[12] Paradox Pro Plus (476+) Sensor Datasheet,

http://www.paradox.com/Documentation/Manuals/InstallationProgramming/

476PLUS-TI01.PDF, Paradox Security Systems, Quebec, Canada.

[13] L. R. Rabiner, B. - H. Juang, “An Introduction to Hidden Markov Models”,

IEEE Acoustics, Speech and Signal Processing (ASSP) Magazine,vol. 3, page

4-16 January, 1986.

[14] B. U. Toreyin, E. B. Soyer, I. Onaran, and A. E. Cetin, “Falling person

detection using multi-sensor signal processing”, EURASIP Journal on Ad-

vances in Signal Processing., 2008(1):1-10, 2008.

[15] R. Collins, A. Lipton, and T. Kanade, A system for video surveillance

and monitoring, In Proceedings of the 8-th International Topical Meeting

on Robotics and Remote Systems. American Nuclear Society, April 25-29,

1999.

[16] Fastcom Technology SA, ‘Method and Device for Detecting Fires Based

on Image Analysis”, PCT Pubn.No. WO02/069292, CH-1006, Lausanne,

Switzerland, 2002.



BIBLIOGRAPHY 66

[17] B. W. Albers, A. K. Agrawal, “Schlieren analysis of an oscillating gas-jet

diffusion”, ICombust. Flame, vol. 119, pp. 84–94, 1999.

[18] W. Phillips III, M. Shah, and N. V. Lobo, “Flame recognition in video”,

Pattern Recognition Letters, vol. 23, pp. 319–327, 2002.

[19] T. Chen, P. Wu, and Y. Chiou, “An early fire-detection method based

on image processing”. InProceedings International Conference on Image

Processing, pp. 1707–1710, 2004.

[20] B. U. Toreyin, Y. Dedeoglu, U. Gudukbay, and A. E. Cetin, “Computer

vision based system for real-time fire and flame detection”, Pattern Recog-

nition Letters, vol. 27, pp. 49–58, 2006.

[21] B. U. Toreyin, Y. Dedeoglu, A. E. Cetin, “HMM Based Falling Person De-

tection Using Both Audio and Video”, in Proceedings of IEEE International

Workshop on Human-Computer Interaction, Beijing, China, pp. 211–220,

2005.

[22] F. Jabloun, A. E. Cetin, “The Teager energy based feature parameters for

robust speech recognition in car noise”, in Proceedings of IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing’99, pp. 273–

276, 1999.

[23] H. Bunke and T. Caelli, HMMs Applications in Computer Vision., World

Scientific, 2001.

[24] L. R. Rabiner, B. - H. Juang, Fundamentals of Speech Recognition, New

Jersey: Prentice-Hall Inc., 1993.

[25] E. Erzin, A. Cetin, and Y. Yardimci, “Subband analysis for robust speech

recognition in the presence of car noise”, in Proceedings of IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing’95, vol. 1, pp.

417–420, 1995.



BIBLIOGRAPHY 67

[26] R. Sarikaya, B. L. Pellom, and J. H. Hansen, “Wavelet Packet Transform

Features with Application to Speaker Identification”, in in Proc. NORSIG

’98, 1998.

[27] R. Sarikaya and J. N. Gowdy, “Subband Based Classification of Speech Under

Stress”, in Proceedings of IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP’98), pp. 596–572, 1998.

[28] C.W. Kim, R. Ansari, and A. E. Cetin, “A class of linear-phase regular

biorthogonal wavelets”, in Proceedings of IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP ’92), Vol. 4, pp. 673–

676, San Francisco, Calif., USA, March 1992.

[29] M. Thuillard, “A new flame detector using the latest research on flames and

fuzzy-wavelet algorithms”, Fire Safety Journal, 37:371-380, 2002.

[30] F. C. Carter, and N. Cross, “Combustion monitoring using infrared array-

based detectors”, Measurement Science and Technology, vol. 14, pp. 1117–

1122, 2003.

[31] M. Thuillard, “Method and Device for Detecting Fires Based on Image

Analysis.” US Patent 6,011,464, 1998.

[32] Anderson and Moore, Optimal Filtering. Dover Publications, 1979. ISBN-

10: 0486439380, ISBN-13: 978-0486439389.

[33] D. Cao, O. Masoud, D. Boley, and N. Papanikolopoulos, “Online motion

classification using support vector machines”, in IEEE International Con-

ference on Robotics & Automation, vol. 3, pages 2291–2296, May 2004.

[34] A. Hakeem and M. Shah, “Learning, detection and representation of multi-

agent events in videos”,Artificial Intelligence, 171(8-9):586-605, 2007.



BIBLIOGRAPHY 68

[35] G. G. Medioni, I. Cohen, F. Bremond, S. Hongeng, and R. Nevatia,“Event

detection and analysis from video streams”, IEEE Transactions on Pattern

Analysis and Machine Intelligence , 23(8):873–889, 2001

[36] R. A. Redner and H. F. Walker, “Mixture densities maximum likelihood,

and the EM algorithm”, SIAM Review, 26 April 1984.

[37] D. M. Titterington, A. F. M. Smith and U. E. Makov, Statistical Analysis

Of Finite Mixture Distributions. John Wiley & Sons, 1985.

[38] Z. Xie, M.-L. Shyu, and S.-C. Chen, “Video event detection with combined

distance-based and rule-based data mining techniques”, in proceedings of the

IEEE International Conference on Multimedia and Expo, pages 2026–2029,

july 2007.

[39] P. Zappi, E. Farella, and L. Benini, “Enhancing the spatial resolution of

presence detection in a pir based wireless surveillance network”, in Proceed-

ings of the IEEE International Conferance on Advanced Video and Signal

based Surveillance, pp. 295–300, Sept. 5-7, 2007.

[40] Kyoung Nam Ha , Kyung Chang Lee, Suk Lee “Development of PIR sensor

based indoor location detection system for smart home”, in proceedings of

the SICE-ICASE International Joint Conference, pp. 2162–2167, Oct. 18-

21, 2006.


	INTRODUCTION
	Pyroelectric Infrared (PIR) Sensors
	IR Radiation
	Pyroelectricity
	Theory of Operation
	PID Sensor Module Configuration
	Fresnel Lens
	PIR Sensors
	Amplifier Circuitry
	Comparator

	First Generation (Ordinary) Sensors
	Second Generation Sensors
	Third Generation Sensors

	Pet Detection
	Data Processing
	Experimental Results
	Conclusion

	Flame Detection
	Data Acquisition
	Sensor Data Processing and HMMs
	Threshold Estimation for State Transitions

	Experimental Results
	 Summary 

	Human Motion Event Detection
	PIR Event Detection System
	Event Classes
	Feature Extraction using Wavelet Domain Processing
	GMM Training
	Event Detection

	Experimental Results
	Conclusion

	Conclusions and Future Work
	Bibliography


