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Abstract

This is a review article describing the recent developments in Video based Fire Detec-

tion (VFD). Video surveillance cameras and computer vision methods are widely used in

many security applications. It is also possible to use security cameras and special purpose

infrared surveillance cameras for fire detection. This requires intelligent video processing

techniques for detection and analysis of uncontrolled fire behavior. VFD may help reduce

the detection time compared to the currently available sensors in both indoors and out-

doors because cameras can monitor “volumes” and do not have transport delay that the

traditional “point” sensors suffer from. It is possible to cover an area of 100 km2 using a

single pan-tilt-zoom camera placed on a hilltop for wildfire detection. Another benefit of

the VFD systems is that they can provide crucial information about the size and growth

of the fire, direction of smoke propagation.

Keywords: Video based fire detection, computer vision, smoke detection, wavelets, covariance

matrices, decision fusion.
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1 Introduction

Video surveillance cameras are widely used in security applications. Millions of cameras are

installed all over the world in recent years. But it is practically impossible for surveillance

operators to keep a constant eye on every single camera. Identifying and distilling the relevant

information is the greatest challenge currently facing the video security and monitoring system

operators. To quote New Scientist magazine: “There are too many cameras and too few pairs

of eyes to keep track of them” [1]. There is a real need for intelligent video content analysis to

support the operators for undesired behavior and unusual activity detection before they occur.

In spite of the significant amount of computer vision research commercial applications for real-

time automated video analysis are limited to perimeter security systems, traffic applications

and monitoring systems, people counting and moving object tracking systems. This is mainly

due to the fact that it would be very difficult to replicate general human intelligence.

Fire is one of the leading hazards affecting everyday life around the world. Intelligent video

processing techniques for the detection and analysis of fire are relatively new. To avoid large

scale fire and smoke damage, timely and accurate fire detection is crucial. The sooner the fire is

detected, the better the chances are for survival. Furthermore, it is also crucial to have a clear

understanding of the fire development and the location. Initial fire location, size of the fire, the

direction of smoke propagation, growth rate of the fire are important parameters which play

a significant role in safety analysis and fire fighting/mitigation, and are essential in assessing

the risk of escalation. Nevertheless, the majority of the detectors that are currently in use are

“point detectors” and simply issue an alarm [2]. They are of very little use to estimate fire
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evolution and they do not provide any information about the fire circumstances.

In this article, a review of video flame and smoke detection research is presented. Recently

proposed Video Fire Detection (VFD) techniques are viable alternatives or complements to the

existing fire detection techniques and have shown to be useful to solve several problems related

to the traditional sensors. Conventional sensors are generally limited to indoors and are not

applicable in large open spaces such as shopping centers, airports, car parks and forests. They

require a close proximity to the fire and most of them cannot provide additional information

about fire location, dimension, etc. One of the main limitations of commercially available fire

alarm systems is that it may take a long time for carbon particles and smoke to reach the

“point” detector. This is called the transport delay. It is our belief that video analysis can be

applied in conditions in which conventional methods fail. VFD has the potential to detect the

fire from a distance in large open spaces, because cameras can monitor “volumes”. As a result,

VFD does not have the transport and threshold delay that the traditional “point” sensors suffer

from. As soon as smoke or flames occur in one of the camera views, it is possible to detect fire

immediately. We all know that human beings can detect an uncontrolled fire using their eyes

and vision systems but as pointed out above it is not easy to replicate human intelligence.

The research in this domain was started in the late nineties. Most of the VFD articles

available in the literature are influenced by the notion of ‘weak’ Artificial Intelligence (AI)

framework which was first introduced by Hubert L. Dreyfus in his critique of the so called

‘generalized’ AI [3, 4]. Dreyfus presents solid philosophical and scientific arguments on why

the search for ‘generalized’ AI is futile [5]. Therefore, each specific problem including VFD

fire should be addressed as an individual engineering problem which has its own characteristics

4



[6]. It is possible to approximately model the fire behavior in video using various signal and

image processing methods and automatically detect fire based on the information extracted

from video. However, the current systems suffer from false alarms because of modelling and

training inaccuracies.

Currently available VFD algorithms mainly focuses on the detection and analysis of smoke

and flames in consecutive video images. In early articles, mainly flame detection was investi-

gated. Recently, smoke detection problem is also considered. The reason for this can be found

in the fact that smoke spreads faster and in most cases will occur much faster in the field of view

of the cameras. In wildfire applications, it may not be even possible to observe flames for a long

time. The majority of the state-of-the-art detection techniques focuses on the color and shape

characteristics together with the temporal behavior of smoke and flames. However, due to the

variability of shape, motion, transparency, colors, and patterns of smoke and flames, many of

the existing VFD approaches are still vulnerable to false alarms. Due to noise, shadows, illu-

mination changes and other visual artifacts in recorded video sequences, developing a reliable

detection system is a challenge to the image processing and computer vision community.

With today’s technology, it is not possible to have a fully reliable VFD system without a

human operator. However, current systems are invaluable tools for surveillance operators. It

is also our strong belief that combining multi-modal video information using both visible and

infrared (IR) technology will lead to higher detection accuracy. Each sensor type has its own

specific limitations, which can be compensated by other types of sensors. Although it would be

desirable to develop a fire detection system which could operate on the existing closed circuit

television (CCTV) equipment without introducing any additional cost. However, the cost of
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using multiple video sensors does not outweigh the benefit of multi-modal fire analysis. The

fact that IR manufacturers also ensure a decrease in the sensor cost in the near future, fully

opens the door to multi-modal video analysis. VFD cameras can also be used to extract useful

related information, such as the presence of people caught in the fire, fire size, fire growth,

smoke direction, etc.

Video fire detection systems can be classified into various sub-categories according to

(i) the spectral range of the camera used,

(ii) the purpose (flame or smoke detection),

(iii) the range of the system.

There are overlaps between the categories above. In this article, video fire detection methods

in visible/visual spectral range are presented in Section 2. Infrared camera based systems are

presented in Section 3. Flame and smoke detection methods using regular and infrared cameras

are also reviewed in Sections 2 and 3, respectively. In Section 4 and 5, wildfire detection methods

using visible and IR cameras are reviewed. Finally, conclusions are drawn in the last section.

2 Video fire detection in visible/visual spectral range

Over the last years, the number of papers about visual fire detection in the computer vision

literature is growing exponentially [2]. As is, this relatively new subject in vision research is

in full progress and has already produced promising results. However, this is not a completely

solved problem as in most computer vision problems. Behavior of smoke and flames of an

uncontrolled fire differs with distance and illumination. Furthermore, cameras are not color
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and/or spectral measurement devices. They have different sensors and color and illumination

balancing algorithms. They may produce different images and video for the same scene because

of their internal settings and algorithms.

In this section, a chronological overview of the state-of-the-art, i.e., a collection of frequently

referenced papers on short range (< 100 m) fire detection methods, is presented in Tables 1, 2

and 3. For each of these papers we investigated the underlying algorithms and checked the

appropriate techniques. In the following, we discuss each of these detection techniques and

analyze their use in the listed papers.

2.1 Color Detection

Color detection was one of the first detection techniques used in VFD and is still used in almost

all detection methods. The majority of the color-based approaches in VFD make use of RGB

color space, sometimes in combination with HSI/HSV saturation [10, 24, 27, 28]. The main

reason for using RGB is that almost all visible range cameras have sensors detecting video in

RGB format and there is the obvious spectral content associated with this color space. It is

reported that RGB values of flame pixels are in red-yellow color range indicated by the rule

(R > G > B) as shown in Fig. 1. Similarly, in smoke pixels, R,G and B values are very close

to each other. More complex systems use rule-based techniques such as Gaussian smoothed

color histograms [7], statistically generated color models [15], and blending functions [20]. It

is obvious that color cannot be used by itself to detect fire because of the variability in color,

density, lighting, and background. However, the color information can be used as a part of

a more sophisticated system. For example, chrominance decrease is used in smoke detection
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schemes of [14] and [2]. Luminance value of smoke regions should be high for most smoke

sources. On the other hand, the chrominance values should be very low.

The conditions in YUV color space are as follows:

Condition 1:Y > TY

Condition 2:|U − 128| < TU & |V − 128| < TV .

where Y , U and V are the luminance and chrominance values of a particular pixel, respectively.

The luminance component Y takes values in the range [0, 255] in an 8-bit quantized image and

the mean values of chrominance channels, U and V are increased to 128 so that they also take

values between 0 and 255. The thresholds TY , TU and TV are experimentally determined [37].

2.2 Moving Object Detection

Moving object detection is also widely used in VFD, because flames and smoke are moving

objects. To determine if the motion is due to smoke or an ordinary moving object, further

analysis of moving regions in video is necessary.

Well-known moving object detection algorithms are background (BG) subtraction meth-

ods [16, 21, 18, 14, 13, 17, 20, 22, 27, 28, 30, 34], temporal differencing [19], and optical flow

analysis [9, 8, 29]. They can all be used as part of a VFD system.

In background subtraction methods, it is assumed that the camera is stationary. In Fig. 2,

a background subtraction based motion detection example is shown using the dynamic back-

ground model proposed by Collins et al. [38]. This Gaussian Mixture Model based approach

model was used in many of the articles listed in Tables 1, 2 and 3.

Some of the early VFD articles simply classified fire colored moving objects as fire but this
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Figure 1: Color detection: smoke region pixels have color values that are close to each other.

Pixels of flame regions lie in the red-yellow range of RGB color space with R > G > B.

approach leads to many false alarms, because falling leaves in autumn or fire colored ordinary

objects, etc., may all be incorrectly classified as fire. Further analysis of motion in video is

needed to achieve more accurate systems.
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Figure 2: Moving object detection: background subtraction using dynamic background model.

2.3 Motion and Flicker Analysis using Fourier and Wavelet Trans-

forms

As it is well-known, flames flicker in uncontrolled fires, therefore flicker detection [24, 18, 12,

13, 27, 28, 30] in video and wavelet-domain signal energy analysis [21, 14, 20, 26, 31, 39]

can be used to distinguish ordinary objects from fire. These methods focus on the temporal

behavior of flames and smoke. As a result, flame colored pixels appear and disappear at edges

of turbulent flames. The research in [16, 18] show experimentally that the flicker frequency of

turbulent flames is around 10Hz and that it is not greatly affected by the burning material and

the burner. As a result, it is proposed to use frequency analysis to differentiate flames from

other moving objects. However, an uncontrolled fire in its early stage exhibits a transition to
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chaos due to the fact that combustion process consists of nonlinear instabilities which result

in transition to chaotic behavior via intermittency [40, 41, 42, 43]. Consequently, turbulent

flames can be characterized as a chaotic wide band frequency activity. Therefore, it is not

possible to observe a single flickering frequency in the light spectrum due to an uncontrolled

fire. This phenomenon was observed by independent researchers working on video fire detection

and methods were proposed accordingly [14, 44, 27]. Similarly, it is not possible to talk about a

specific flicker frequency for smoke but we clearly observe a time-varying meandering behavior

in uncontrolled fires. Therefore, smoke flicker detection does not seem to be a very reliable

technique but it can be used as part of a multi-feature algorithm fusing various vision clues for

smoke detection. Temporal Fourier analysis can still be used to detect flickering flames, but we

believe that there is no need to detect specifically 10 Hz. An increase in Fourier domain energy

in 5 to 10 Hz is an indicator of flames.

The temporal behavior of smoke can be exploited by wavelet domain energy analysis. As

smoke gradually softens the edges in an image, Toreyin et al. [14] found the energy variation

between background and current image as a clue to detect the presence of smoke. In order

to detect the energy decrease in edges of the image, they use the Discrete Wavelet Transform

(DWT). The DWT is a multi-resolution signal decomposition method obtained by convolving

the intensity image with filter banks. A standard halfband filterbank produces four wavelet

subimages: the so-called low-low version of the original image Ct, and the horizontal, vertical

and diagonal high frequency band imagesHt, Vt, andDt. The high-band energy from subimages

Ht, Vt, and Dt is evaluated by dividing the image It in blocks bk of arbitrary size as follows:
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E(It, bk) =
∑
i,j∈bk

H2
t (i, j) + V 2

t (i, j) +D2
t (i, j) (1)

Since contribution of edges are more significant in highband wavelet images compared to

flat areas of the image, it is possible to detect smoke using the decrease in E(It, bk). As the

energy value of a specific block varies significantly over time in the presence of smoke, temporal

analysis of the ratio between the current input frame wavelet energy and the background image

wavelet energy is used to detect the smoke as shown in Fig. 3.

2.4 Spatial Wavelet Color Variation and Analysis

Flames of an uncontrolled fire have varying colors even within a small area. Spatial color

difference analysis [24, 13, 28, 32] focuses on this characteristic. Using range filters [24], vari-

ance/histogram analysis [32], or spatial wavelet analysis [13, 28], the spatial color variations in

pixel values are analyzed to distinguish ordinary fire-colored objects from uncontrolled fires. In

Fig. 4 the concept of spatial difference analysis is further explained by means of a histogram

based approach, which focuses on the standard deviation of the green color band. It was ob-

served by Qi and Ebert [24] that this color band is the most discriminative band for recognizing

the spatial color variation of flames. This can also be seen by analyzing the histograms. Green

pixel values vary more than red and blue values. If the standard deviation of the green color

band exceeds tσ = 50 (∼ Borges [32]) in a typical color video the region is labeled as a can-

didate region for a flame. For smoke detection, on the other hand, experiments revealed that

these techniques are not always applicable, because smoke regions often do not show as high
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Figure 3: DWT based video smoke detection: When there is smoke, the ratio between the

input frame wavelet energy and the BG wavelet energy decreases and shows a high degree of

disorder.

spatial color variation as flame regions. Furthermore, textured smoke-colored moving objects

are difficult to distinguish from smoke and can cause false detections. In general, smoke in

an uncontrolled fire is gray and it reduces the color variation in the background. Therefore,

in YUV color space we expect to have reduction in the dynamic range of chrominance color

components U and V after the appearence of smoke in the viewing range of camera.
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Figure 4: Spatial difference analysis: in case of flames the standard deviation σG of the green

color band of the flame region exceeds tσ = 50 (∼ Borges [32]).

2.5 Dynamic Texture and Pattern Analysis

A dynamic texture or pattern in video, such as smoke, flames, water and leaves in the wind can

be simply defined as a texture with motion, [45, 46], i.e., a spatially and time-varying visual

pattern that forms an image sequence or part of an image sequence with a certain temporal

stationarity [47]. Although dynamic textures are easily observed by human eyes, they are

difficult to discern using computer vision methods as the spatial location and extent of dynamic

textures can vary with time and they can be partially transparent. Some dynamic texture and

pattern analysis methods in video [29, 33, 35] are closely related to spatial difference analysis.
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Recently, these techniques are also applied to the flame and smoke detection problem [46].

Currently, a wide variety of methods including geometric, model-based, statistical and motion

based techniques are used for dynamic texture detection [48, 49, 50].

In Fig. 5, dynamic texture detection and segmentation examples are shown, which use video

clips from the DynTex dynamic texture and Bilkent databases [51, 52, 50, 47]. Contours of

dynamic texture regions, e.g., fire, water and steam, are shown in this figure. Dynamic regions in

video are seemed to be segmented very well. However, due to the high computational cost, these

general techniques are not used in practical fire detection algorithms which should run on low-

cost computers, FPGAs or digital signal processors. If future developments in computers and

graphics accelerators could lower the computational cost, dynamic texture detection methods

can be incorporated into the currently available video fire detection systems to achieve more

reliable systems.

Figure 5: Dynamic texture detection: contours of detected dynamic texture regions are shown

in the figure (Results from DYNTEX and Bilkent databases [51, 53]).

Ordinary moving objects in video, such as walking people, have a pretty stable or almost

periodic boundary over time. On the other hand uncontrolled flame and smoke regions exhibit
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chaotic boundary contours. Therefore disorder analysis of boundary contours of a moving

object is useful for fire detection. Some examples of frequently used metrics are randomness

of area size [23, 32], boundary roughness [14, 11, 28, 32], and boundary area disorder [18].

Although those metrics differ in definition, the outcome of each of them is almost identical.

In the smoke detector developed by Verstock et al. [2] , disorder analysis of the Boundary

Area Roughness (BAR) is used, which is determined by relating the perimeter of the region

to the square root of the area (Fig. 6). Another technique is the histogram based orientation

accumulation by Yuan [22]. This technique also produces good disorder detection results, but

it is computationally more complex than the former methods. Related to the disorder analysis

is the growing of smoke and flame regions in the early stage of a fire. In [31, 34], the growth

rate of the region-of-interest is used as a feature parameter for fire detection. Compared to

disorder metrics, however, growth analysis is less effective in detecting the smoke especially in

wildfire detection. This is because smoke region appears to grow very slowly in wildfires when

they are viewed from long distances. Furthermore, an ordinary object may be approaching to

the camera.

2.6 Spatio-temporal Normalized Covariance Descriptors

A recent approach which combines color and spatio-temporal information by region covariance

descriptors is used in European Commission funded FP-7 FIRESENSE project [54, 55, 56].

The method is based on analyzing the spatio-temporal blocks. The blocks are obtained by

dividing the fire and smoke colored regions into 3D regions that overlap in time. Classification

of the features is performed only at the temporal boundaries of blocks instead of performing it

19



Figure 6: Boundary area roughness of consecutive flame regions.

at each frame. This reduces the computational complexity of the method.

Covariance descriptors are proposed by Tuzel, Porikli and Meer to be used in object de-

tection and texture classification problems [54, 55]. In [57] temporally extended normalized

covariance descriptors to extract features from video sequences is proposed.

Temporally extended normalized covariance descriptors are designed to describe spatio-

temporal video blocks. Let I(i, j, n) be the intensity of (i, j)th pixel of the nth image frame of a

spatio-temporal block in video. The property parameters defined in Equations below are used

to form a covariance matrix representing spatial information. In addition to spatial parameters,

temporal derivatives, It and Itt are introduced, which are the first and second derivatives of

intensity with respect to time, respectively. By adding these two features to the previous

property set, normalized covariance descriptors can be used to define spatio-temporal blocks in
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video.

For flame detection:

Ri,j,n = Red(i, j, n), (2)

Gi,j,n = Green(i, j, n), (3)

Bi,j,n = Blue(i, j, n), (4)

Ii,j,n = Intensity(i, j, n), (5)

Ixi,j,n =

∣∣∣∣∂Intensity(i, j, n)∂i

∣∣∣∣ , (6)

Iyi,j,n =

∣∣∣∣∂Intensity(i, j, n)∂j

∣∣∣∣ , (7)

Ixxi,j,n =

∣∣∣∣∂2Intensity(i, j, n)

∂i2

∣∣∣∣ , (8)

Iyyi,j,n =

∣∣∣∣∂2Intensity(i, j, n)

∂j2

∣∣∣∣ , (9)

Iti,j,n =

∣∣∣∣∂Intensity(i, j, n)∂n

∣∣∣∣ , (10)

and Itti,j,n =

∣∣∣∣∂2Intensity(i, j, n)

∂n2

∣∣∣∣ (11)

For smoke detection:

Yi,j,n = Luminance(i, j, n), (12)

Ui,j,n = ChrominanceU(i, j, n), (13)

Vi,j,n = ChrominanceV (i, j, n), (14)

Ii,j,n = Intensity(i, j, n), (15)

Ixi,j,n =

∣∣∣∣∂Intensity(i, j, n)∂i

∣∣∣∣ , (16)

Iyi,j,n =

∣∣∣∣∂Intensity(i, j, n)∂j

∣∣∣∣ , (17)
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Ixxi,j,n =

∣∣∣∣∂2Intensity(i, j, n)

∂i2

∣∣∣∣ , (18)

Iyyi,j,n =

∣∣∣∣∂2Intensity(i, j, n)

∂j2

∣∣∣∣ , (19)

Iti,j,n =

∣∣∣∣∂Intensity(i, j, n)∂n

∣∣∣∣ , (20)

Itti,j,n =

∣∣∣∣∂2Intensity(i, j, n)

∂n2

∣∣∣∣ (21)

Computation of Normalized Covariance Values in Spatio-temporal Blocks The

video is divided into blocks of size 10 × 10 × Frate where Frate is the frame rate of the video.

Computing the normalized covariance parameters for each block of the video would be computa-

tionally inefficient. Therefore, only pixels corresponding to the non-zero values of the following

mask are used in the selection of blocks. The mask is defined by the following function:

Ψ(i, j, n) =


1 if M(i, j, n) = 1

0 otherwise

(22)

where M(., ., n) is the binary mask obtained from color detection and moving object detection

algorithms. A total of 10 property parameters are used for each pixel satisfying the color

Figure 7: An example for spatio-temporal block extraction and classification.
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condition (RGB version of the formula is used for flame detection). If we use all 10 property

parameters we obtain 10×11
2

= 55 correlation values. This means that the feature vector for

each spatio-temporal block has 55 elements. To further reduce the computational cost, the

normalized covariance values of the pixel property vectors

Φcolor(i, j, n) =

[
Y (i, j, n) U(i, j, n) V (i, j, n)

]T
(23)

and

ΦST (i, j, n) =



I(i, j, n)

Ix(i, j, n)

Iy(i, j, n)

Ixx(i, j, n)

Iyy(i, j, n)

It(i, j, n)

Itt(i, j, n)



(24)

are computed separately. Therefore, the property vector Φcolor(i, j, n) produces 3×4
2

= 6 and

the property vector ΦST (i, j, n) produces 7×8
2

= 28 correlation values, respectively and 34

correlation parameters are used in training and testing of the Support Vector Machine (SVM)

instead of 55 parameters.

During the implementation of the correlation method, the first derivative of the image is

computed by filtering the image with [-1 0 1] and second derivative is found by filtering the

image with [1 -2 1] filters, respectively. The lower or upper triangular parts of the matrix

Ĉ(a, b) is obtained by normalizing the covariance matrix Σ̂(a, b) form the feature vector of a

given image region:
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Σ̂(a, b) =
1

N − 1

(∑
i

∑
j

Φi,j(a)Φi,j(b)− CN

)
(25)

where

CN =
1

N

(∑
i

∑
j

Φi,j(a)

)(∑
i

∑
j

Φi,j(b)

)
(26)

Ĉ(a, b) =


√
Σ̂(a, b) if a = b

Σ̂(a,b)√
Σ̂(a,a)

√
Σ̂(b,b)

otherwise

(27)

Entries of Ĉ(a, b) matrix are processed by a Support Vector Machine which had been pre-

viously trained with fire and smoke video clips.

In order to improve the detection performance, the majority of the articles in the literature

use a combination of the fire feature extraction methods described above. Depending on the

fire/environmental characteristics, one combination of features will outperform the other and

vice versa. In Section 4, we describe an adaptive fusion method combining the results of various

fire detection methods in an on-line manner.

It should be pointed out that articles in the literature and those which are referenced in

this state of the art review indicate that ordinary visible range camera based detection systems

promise good fire detection results. However, they still suffer from a significant amount of

missed detections and false alarms in practical situations as in other computer vision problems

[5, 6]. The main cause of these problems is the fact that visual detection is often subject to

constraints regarding the scene under investigation, e.g., changing environmental conditions,
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different camera parameters and color settings and illumination. It is also impossible to compare

the articles with each other and determine the best one. This is because they use different

training and data sets.

A data set of fire and non-fire videos is available to the research community in European

Commission funded FIRESENSE project web-page [56]. These test videos were used for training

and testing purposes of the smoke and flame detection algorithms developed within the FIRE-

SENSE project. Thus, a fair comparison of the algorithms developed by individual partners

could be conducted. The test database includes 27 test and 29 training sequences of visible spec-

trum recordings of flame scenes, 15 test and 27 training sequences of visible spectrum recordings

of smoke scenes, and 22 test and 27 training sequences of visible spectrum recordings of for-

est smoke scenes. This database is currently available to registered users of the FIRESENSE

website [Reference: FIRESENSE project File Repository, http://www.firesense.eu, 2012].

2.7 Classification techniques

A popular approach for the classification of the multi-dimensional feature vectors obtained from

each candidate flame or smoke blob is SVM classification, typically with Radial Basis Function

(RBF) kernels. A large number of frames of fire and non-fire video sequences need to be used

for training these SVM classifiers, otherwise the number of false alarms (false positives or true

negatives) may be significantly increased.

Other classification methods include the AdaBoost method [22], neural networks [29, 35],

Bayesian classifiers [30, 32], Markov models [28, 33] and rule-based classification [58].

As in any video processing method, morphological operations, subblocking and clean-up
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post-processing such as median-filtering are used as an integral part of any VFD system [21,

22, 25, 20, 26, 33, 36, 59].

2.8 Evaluation of Visible Range Video Fire Detection Methods

An evaluation of different visible range video fire detection methods is presented in Table 4.

Table 4 summarizes comparative detection results for the smoke and flame detection algorithm

by Verstockt [2] (Method 1), a combination of the flame detection method by Celik et al. [60]

and the smoke detection by Toreyin et al. [14] (Method 2) and a combination of the feature-

based flame detection method by Borges et al. [23] and the smoke detection method by Xiong

et al. [18] (Method 3). Among various algorithms, Verstockt’s method is a relatively recent

one whereas flame detection methods by Celik and Borges and the smoke detection methods

by Toreyin and Xiong are commonly referenced methods in the literature.

Test sequences used for performance evaluation are captured in different environments under

various conditions. Snapshots from test videos are presented in Fig. 8. In order to objectively

evaluate the detection results of different methods, the ‘detection rate’ metric [61, 2] is used

which is comparable to the evaluation methods used by Celik et al. [60] and Toreyin et al. [13].

The detection rate equals the ratio of the number of correctly detected frames as fire, i.e., the

detected frames as fire minus the number of falsely detected frames, to the number of frames

with fire in the manually created ground truth frames. As results indicate, the detection

performances of different methods are comparable with each other.
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Figure 8: Snapshots from test sequences with and without fire.

3 Video Fire detection in Infrared (IR) Spectral Range

When there is no or very little visible light or the color of the object to be detected is similar

to the background, IR imaging systems provide solutions [62, 63, 64, 65, 66, 67, 68]. Although

there is an increasing trend in IR-camera based intelligent video analysis, the number of papers

in the area of IR-based fire detection is few [64, 65, 66, 67, 68]. This is mainly due to the
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high cost of IR imaging systems compared to ordinary cameras. Manufacturers predict that

IR camera prices will go down in the near future. Therefore, we expect that the number of IR

imaging applications will increase significantly [63]. Long Wave Infrared (8-12 micron range)

cameras are the most widely available cameras in the market. Longwave Infrared (LWIR)

light goes through smoke therefore it is easy to detect smoke using LWIR imaging systems.

Nevertheless, results from existing work already ensure the feasibility of IR cameras for flame

detection.

Owrutsky et al. [64] worked in the near infrared (NIR) spectral range and compared the

global luminosity L, which is the sum of the pixel intensities of the current frame, to a reference

luminosity Lb and a threshold Lth. If there are a number of consecutive frames where L

exceeds the persistence criterion Lb+Lth, the system goes into an alarm stage. Although this

fairly simple algorithm seems to produce good results in the reported experiments, its limited

constraints do raise questions about its applicability in large and open uncontrolled public

places and it will probably produce many false alarms to hot moving objects such as cars and

human beings. Although the cost of NIR cameras are not high, their imaging ranges are shorter

compared to visible range cameras and other IR cameras.

Toreyin et al. [65] detect flames in LWIR by searching for bright-looking moving objects with

rapid time-varying contours. A wavelet domain analysis of the 1D-curve representation of the

contours is used to detect the high frequency nature of the boundary of a fire region. In addition,

the temporal behavior of the region is analyzed using a Hidden Markov Model (HMM). The

combination of both spatial and temporal clues seems more appropriate than the luminosity

approach and, according to the authors, their approach greatly reduces false alarms caused by
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ordinary bright moving objects. A similar combination of temporal and spatial features is also

used by Bosch et al. [66]. Hotspots, i.e., candidate flame regions, are detected by automatic

histogram-based image thresholding. By analyzing the intensity, signature, and orientation of

these resulting hot objects regions, discrimination between flames and other objects is made.

Verstock et al. [2] also proposed an IR-based fire detector which mainly follows the latter feature

based strategy, but contrary to Bosch et al.’s work [66] a dynamic background subtraction

method is used, which aims at coping with the time-varying characteristics of dynamic scenes.

To sum up, it should be pointed out that it is not straightforward to detect fires using IR

cameras. Not every bright object in IR video is a source of wildfire. It is important to mention

that IR imaging has its own specific limitations, such as thermal reflections, IR blocking and

thermal-distance problems. In some situations, IR based detection will perform better than

visible VFD, but under other circumstances, visible VFD can improve IR flame detection. This

is due to the fact that, smoke appears earlier and becomes visible from long distances in a

typical uncontrolled fire. Flames and burning objects may not be in the viewing range of the

IR camera. As such, higher detection accuracies with lower false alarm rates can be achieved by

combining multi-spectrum video information. Various image fusion methods may be employed

for this purpose [69, 70]. Clearly, each sensor type has its own specific limitations, which can

only be compensated by other types of sensors.
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4 Wildfire Smoke Detection Using Visible Range Cam-

eras

As pointed out in the previous section, smoke is clearly visible from long distances in wildfires

and forest fires. In most cases flames are hindered by trees. Therefore, IR imaging systems may

not provide solutions for early fire detection in wildfires but ordinary visible range cameras can

detect smoke from long distances.

Smoke at far distances (> 100 m to the camera) exhibits different spatio-temporal charac-

teristics than nearby smoke and fire [71], [59], [72]. This demands specific methods explicitly

developed for smoke detection at far distances rather than using nearby smoke detection meth-

ods described in [73]. Cetin et al. proposed wildfire smoke detection algorithms consisting of

five main sub-algorithms: (i) slow moving object detection in video, (ii) smoke-colored region

detection, (iii) wavelet transform based region smoothness detection, (iv) shadow detection

and elimination, (v) covariance matrix based classification, with individual decision functions,

D1(x, n), D2(x, n), D3(x, n), D4(x, n) and D5(x, n), respectively, for each pixel at location x of

every incoming image frame at time step n. Decision results of individual algorithms are fused

to obtain a reliable wildfire detection system in [74, 37].

The video based wildfire detection system described in this section has been deployed in

more than 100 forest look out towers in the world including Turkey, Italy and the US. The

system is not fully automatic because forestal scenes vary over time due to weather conditions

and changes in illumination. The system is developed to help security guards in look out towers.

It is not feasible to develop one strong fusion model with fixed weights in forestal setting which
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Figure 9: Snapshot of typical wildfire smoke captured by a forest watch tower which is 5 km

away from the fire (rising smoke is marked with an arrow).

has a time varying (drifting) nature. An ideal online active learning mechanism should keep

track of drifts in video and adapt itself accordingly. Therefore in Cetin et al.’s system, decision

functions are combined in a linear manner and the weights are determined according to the

weight update mechanism described in the next sub-section.

Decision functions Di, i = 1, ...,M of sub-algorithms do not produce binary values 1

(correct) or −1 (false), but they produce real numbers centered around zero for each incoming

sample x. Output values of decision functions express the confidence level of each sub-algorithm.

The higher the value, the more confident the algorithm.

Morphological operations are applied to the detected pixels to mark the smoke regions. The
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number of connected smoke pixels should be larger than a threshold to issue an alarm for the

region. If a false alarm is issued during the training phase, the oracle gives feedback to the

algorithm by declaring a no-smoke decision value (y = −1) for the false alarm region. Initially,

equal weights are assigned to each sub-algorithm. There may be large variations between

forestal areas and substantial temporal changes may occur within the same forestal region. As

a result, weights of individual sub-algorithms will evolve in a dynamic manner over time. In

Fig. 10, the flowchart of the weight update algorithm is given for one image frame.

Figure 10: Flowchart of the weight update algorithm for one image frame.

4.1 Adaptive Decision Fusion (ADF) Framework

Let the compound algorithm be composed of M -many detection sub-algorithms: D1, ..., DM .

Upon receiving a sample input x at time step n, each sub-algorithm yields a decision value
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Di(x, n) ∈ R centered around zero. If Di(x, n) > 0, it means that the event is detected by the

i-th sub-algorithm.

LetD(x, n) = [D1(x, n), ..., DM(x, n)]T , be the vector of decision values of the sub-algorithms

for the pixel at location x of input image frame at time step n, andw(x, n) = [w1(x, n), ..., wM(x, n)]T

be the current weight vector.

4.1.1 Entropic Projection (E-Projection) Based Weight Update Algorithm

In this subsection, we review the entropic projection based weight update scheme [75, 37, 74].

The e-projection onto a closed and convex set is a generalized version of the metric projection

mapping onto a convex set [76]. Let w(n) denote the weight vector for the nth sample. Its’

e-projection w∗ onto a closed convex set C with respect to a cost functional g(w) is defined as

follows:

w∗ = argmin
w∈C

L(w,w(n)) (28)

where

L(w,w(n)) = g(w)− g(w(n))− ⟨▽g(w),w −w(n)⟩ (29)

and ⟨., .⟩ represents the inner product.

In the adaptive learning problem, we have a hyperplane H(x, n) : DT (x, n).w(n + 1) =

y(x, n) for each sample x. For each hyperplane H(x, n), the e-projection (28) is equivalent to

▽g(w(n+ 1)) = ▽g(w(n)) + λD(x,n) (30)

DT (x, n).w(n+ 1) = y(x, n) (31)

where λ is the Lagrange multiplier. As pointed out above, the e-projection is a generalization
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of the metric projection mapping.

When the cost functional is the entropy functional g(w) =
∑

iwi(n) log(wi(n)), the e-

projection onto the hyperplane H(x, n) leads to the following update equations:

wi(n+ 1) = wi(n)e
λDi(x,n), i = 1, 2, ...,M (32)

where the Lagrange multiplier λ is obtained by inserting (32) into the hyperplane equation:

DT (x, n)w(n+ 1) = y(x, n) (33)

because the e-projection w(n + 1) must be on the hyperplane H(x, n) in Eq. 31. When there

are three hyperplanes, one cycle of the projection algorithm is depicted in Fig. 11. If the

projections are continued in a cyclic manner the weights will converge to the intersection of the

hyperplanes, wc.

Figure 11: Geometric interpretation of the entropic-projection method: Weight vectors corre-

sponding to decision functions at each frame are updated to satisfy the hyperplane equations

defined by the oracle’s decision y(x, n) and the decision vector D(x, n).

It is desirable that each sub-algorithm should contribute to the compound algorithm because

each characterizes a feature of wildfire smoke for the wildfire detection problem. Therefore
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weights of algorithms can be set between 0 and 1 representing the contribution of each feature.

We want to penalize extreme weight values 0 and 1 more compared to values in between

them, because each sub-algorithm is considered to be “weak” compared to the final algorithm.

The entropy functional achieves this. On the other hand the commonly used Euclidean norm

penalizes high weight values more compared to zero weight.

In real-time operating mode, the PTZ cameras are in continuous scan mode visiting pre-

defined preset locations. In this mode, constant monitoring from the oracle can be relaxed by

adjusting the weights for each preset once, and then use the same weights for successive classi-

fications. Since the main issue is to reduce false alarms, the weights can be updated when there

is no smoke in the viewing range of each preset and after that, the system becomes autonomous.

The cameras stop at each preset and run the detection algorithm for some time before moving

to the next preset.

4.2 Fire and Smoke Detection Criteria

In VFD, cameras are used for fire detection. In many cases there will be a large distance between

the PTZ camera and the wildfire. Therefore, it is important to define when the wildfire is visible

by the camera. For this purpose, we propose Johnson’s criteria used in the infrared camera

literature [77].

Johnson’s criteria are about “seeing a target” in an infrared camera. The first criterion

defines detection: In order to detect an object its critical dimension needs to be covered by

1.5 or more pixels in the captured image. Therefore the wildfire is detectable when it occupies

more that 1.5 pixels in video image. This is the ultimate limit. One or two pixels can be
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easily confused with noise. In Fig. 12, minimum smoke size versus detection range is shown for

wildfire smoke using a visible range camera.

Figure 12: Minimum smoke size versus detection distance with a visible range camera.

Curvature of the earth also affects the detection range. For ranges above 20km, smoke

should rise even higher to compensate for the earth’s curvature. A sketch depicting a wildfire

smoke detection scenario from a camera placed on top of a 40m-mast is presented in Fig. 13.

At a distance of 40km, a 40m× 40m smoke has to rise an additional 20m to be detected by the

camera on top of the mast.

The second criterion defines recognition which means that it is possible to make the dis-

tinction between a person, a car, a truck or wildfire. In order to recognize an object it needs

to occupy at least 6 pixels across its critical dimension in a video image. The third criterion

defines identification. This term relates to the military terminology. The critical dimension of

the object should be at least 12 pixels so that the object is idenfied as friend or foe. We can use

the Johnson’s identification criterion for wildfire identification because the white smoke may
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Figure 13: Effect of the earth’s curvature on wildfire smoke detection range.

be due to a dirt cloud from an off-road vehicle or may be a cloud or it may be fog rising above

the trees.

These criteria applied to IR camera based wildfire flame detection are summarized in the

following figure. In Fig. 14, minimum flame sizes versus varying line-of-sight ranges are shown

for detection, recognition and identification using an MWIR InP camera with a spectral range

of 3-5 µm. Note that, a minimum flame size of 1m2 is enough to identify a wildfire at a range of

1.8 km and it is enough to recognize it at a range of 2.7 km. However, at a distance of 11 km,

one can only detect the same fire.

5 Wildfire Smoke Detection Using IR Camera

The smoke of a wildfire can be detected using a visible range camera as explained in the previous

section (cf. Fig. 15). On the other hand, wildfire smoke detection using an ordinary LWIR

camera with spectral range 8-12 µm is very difficult as smoke is invisible (cf. Fig. 16). This

is evident from the snapshots below corresponding to tests using both LWIR and visible range
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Figure 14: Minimum fire sizes versus detection, recognition and identification ranges.

cameras.

Wildfire flame detection is possible using an IR camera (cf. Fig. 16). However, in most

wildfires, smoke appears first. Therefore, it is not necessary to employ an expensive IR camera

to spot flames which may be occluded by tree trunks.

On the other hand LWIR cameras are extremely useful to pinpoint hotspots and flames

from a fire extinguishing helicopter because they have the capability to see through smoke.

Therefore, they are invaluable tools during wildfire fighting.

Smoke detection can be made possible by joint analysis of visible and IR range camera

outputs, as well. A method for smoke detection exploiting both modalities is proposed in [2].

The two-step-method, called LWIR-visual smoke detection, comprises the silhouette coverage

analysis step and disorder analysis of visual silhouette step. The LWIR-visual smoke detector

analyzes the silhouette coverage of moving objects in visible range and long-wave infrared
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Figure 15: Wildfire smoke and fire captured using a visible range camera.

images. Moreover, the flicker in the silhouette of visual smoke regions is taken into account as

an additional clue for smoke presence within the viewing range of the camera [14].

A comparison of performances of the LWIR-visual smoke detector of Verstockt [2] and

visible range camera based smoke detectors of Xiong et al. [18], Calderara et al. [20] and

Toreyin et al. [14] is presented in Table 5. Among these methods, Xiong et al. [18] proposed a

visible range smoke detection algorithm based on background subtraction and flicker/disorder

analysis. Calderara et al.’s method is based on mixture of Gaussians (MoG) of discrete wavelet

transform energy variations and color blending [20]. On the other hand, smoke detection
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Figure 16: Wildfire smoke and fire in Fig. 15 captured using an LWIR camera.

method developed by Toreyin et al. [14] is based on block-based spatial wavelet analysis and

HMM.

Five different setups are formed for test purposes: car fire, straw fire, moving people, mov-

ing car, and paper fire. For each of these fire and non-fire test setups, several video sequences

are generated. The test set contains 18 multi-modal fire and 13 non-fire video sequences under

different lighting conditions. For each of these sequences, ground truth fire decisions are gen-

erated manually. Comparative performance results in terms of alarm percentages with respect

to ground truth are presented in Table 5.

The method which exploits both visible and IR range data, namely the LWIR-visual smoke

detector, yields best detection/false alarm ratio among other methods which only analyze data
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from the visible range of the spectrum. The detection performance of visible range smoke

detectors degrades substantially for the sequences where the scene is not well lit yielding a poor

visibility for smoke. On the contrary, the multi-modal method takes advantage of silhouette

coverage analysis step which compares the silhouettes covered in both LWIR and visible range

images. This analysis step helps to result in a better detection performance for the multi-modal

method.

Table 5: A comparison of performances of the LWIR-visual smoke detector of Verstockt [2]

and visible range camera based smoke detectors of Xiong et al. [18], Calderara et al. [20] and

Toreyin et al. [14].

Fire Alarm

Method Fire Tests Non-fire Tests

Xiong et al. 68% 7%

Calderara et al. 83% 4%

Toreyin et al. 86% 4%

Verstockt 98% 2%

6 Conclusion

The concept of artificial intelligence and artifical systems capable of perceiving their environ-

ment and taking necessary actions was introduced 68 years ago in 1955 by John McCarthy.

There has been significant progress in some applications such as restricted speech recognition,
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character recognition, chess and game playing, etc. On the other hand there is very little

progress even in some simple recognition problems. Humans can easily recognize uncontrolled

fire whenever they see it even from long distances. Computers cannot imitate human intelli-

gence whose operation principles are not clearly understood as of today. It is possible to achieve

significant progress when an intelligent task is described in terms of mathematical and physical

terms. This is usually a slow and difficult process but it has produced results in the past as

in speech recognition. We believe that VFD falls into this category of problems that can be

reduced to an engineering description.

During the last two decade video fire detection research led to commercial and experimental

VFD systems. They are especially used in high risk buildings and areas. Hundreds of video

smoke detection systems are installed in lookout towers and poles for wildfire detection. Al-

though they are not fully automated systems they are invaluable tools for security personel.

Whenever the VFD system produces an alarm, the operator can check if it is a real fire or a

false alarm. In this way the operator can handle multiple cameras.

We believe that further research will improve the detection performance of the VFD systems

while reducing the false alarm rates. We also believe that multimodal systems employing IR

and regular cameras will provide fully reliable VFD solutions. Such systems are currently

expensive, but they will be feasible with the decline of IR camera costs in the near future.
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[74] O. Günay, K. Taşdemir, B. U. Töreyin, and A. E. Çetin, “Video based wildfire detection at night,” Fire

Safety Journal, vol. 44, no. 6, pp. 860–868, 2009.

[75] O. Gunay, B.U. Toreyin, K. Kose, and A.E. Cetin, “Entropy-functional-based online adaptive decision

fusion framework with application to wildfire detection in video,” Image Processing, IEEE Transactions

on, vol. 21, no. 5, pp. 2853–2865, May.

[76] L. M. Bregman, “The Relaxation Method of Finding the Common Point of Convex Sets and Its Ap-

plication to the Solution of Problems in Convex Programming,” USSR Computational Mathematics and

Mathematical Physics, vol. 7, pp. 200–217, 1967.

[77] J. Johnson, “Analysis of image forming systems,” in Image Intensifier Symposium. 1958, pp. 244–273, War-

fare Electrical Engineering Department, U.S. Army Research and Development Laboratories, Ft. Belvoir,

Va.

52



List of Figures

1 Color detection: smoke region pixels have color values that are close to each other. Pixels of

flame regions lie in the red-yellow range of RGB color space with R > G > B. . . . . . . . . . . . 12

2 Moving object detection: background subtraction using dynamic background model. . . . . . . . 13

3 DWT based video smoke detection: When there is smoke, the ratio between the input frame

wavelet energy and the BG wavelet energy decreases and shows a high degree of disorder. . . . . 16

4 Spatial difference analysis: in case of flames the standard deviation σG of the green color band

of the flame region exceeds tσ = 50 (∼ Borges [32]). . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Dynamic texture detection: contours of detected dynamic texture regions are shown in the figure

(Results from DYNTEX and Bilkent databases [51, 53]). . . . . . . . . . . . . . . . . . . . . . . . 18

6 Boundary area roughness of consecutive flame regions. . . . . . . . . . . . . . . . . . . . . . . . . 20

7 An example for spatio-temporal block extraction and classification. . . . . . . . . . . . . . . . . . 22

8 Snapshots from test sequences with and without fire. . . . . . . . . . . . . . . . . . . . . . . . . . 28

9 Snapshot of typical wildfire smoke captured by a forest watch tower which is 5 km away from the

fire (rising smoke is marked with an arrow). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

10 Flowchart of the weight update algorithm for one image frame. . . . . . . . . . . . . . . . . . . . 33

11 Geometric interpretation of the entropic-projection method: Weight vectors corresponding to

decision functions at each frame are updated to satisfy the hyperplane equations defined by the

oracle’s decision y(x, n) and the decision vector D(x, n). . . . . . . . . . . . . . . . . . . . . . . 35

12 Minimum smoke size versus detection distance with a visible range camera. . . . . . . . . . . . . 37

13 Effect of the earth’s curvature on wildfire smoke detection range. . . . . . . . . . . . . . . . . . . 38

14 Minimum fire sizes versus detection, recognition and identification ranges. . . . . . . . . . . . . . 39

15 Wildfire smoke and fire captured using a visible range camera. . . . . . . . . . . . . . . . . . . . 40

16 Wildfire smoke and fire in Fig. 15 captured using an LWIR camera. . . . . . . . . . . . . . . . . . 41

53



List of Tables

1 State-of-the-art: underlying techniques (PART1: 2002-2007). . . . . . . . . . . . . . . . . . . . . 8

2 State-of-the-art: underlying techniques (PART 2: 2007-2009). . . . . . . . . . . . . . . . . . . . . 9

3 State-of-the-art: underlying techniques (PART 3: 2010-2011). . . . . . . . . . . . . . . . . . . . . 10

4 Comparison of the smoke and flame detection method by Verstockt [2] (Method 1), the combined

method based on the flame detector by Celik et al. [60] and the smoke detector described in

Toreyin et al. [14] (Method 2), and combination of the feature-based flame detection method by

Borges et al. [23] and the smoke detection method by Xiong et al. [18] (Method 3). . . . . . . . . 27

5 A comparison of performances of the LWIR-visual smoke detector of Verstockt [2] and visible

range camera based smoke detectors of Xiong et al. [18], Calderara et al. [20] and Toreyin et al. [14]. 42

54


