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Abstract—In this paper, an entropy functional based online
adaptive decision fusion framework is developed for image
analysis and computer vision applications. In this framework, it
is assumed that the compound algorithm consists of several sub-
algorithms, each of which yields its own decision as a real number
centered around zero, representing the confidence level of that
particular sub-algorithm. Decision values are linearly combined
with weights which are updated online according to an active
fusion method based on performing entropic projections onto
convex sets describing sub-algorithms. It is assumed that there is
an oracle, who is usually a human operator, providing feedback
to the decision fusion method. A video based wildfire detection
system was developed to evaluate the performance of the decision
fusion algorithm. In this case, image data arrives sequentially
and the oracle is the security guard of the forest lookout tower,
verifying the decision of the combined algorithm. The simulation
results are presented.

Index Terms—Projections onto convex sets, active learning,
decision fusion, online learning, entropy maximization, wildfire
detection using video.

I. INTRODUCTION

IN this paper an online learning framework, called Entropy
Functional based Adaptive Decision Fusion (EADF), which

can be used in various image analysis and computer vision
applications is proposed. In this framework, it is assumed that
the compound algorithm consists of several sub-algorithms
each of which yields its own decision. The final decision is
reached based on a set of real numbers representing confidence
levels of various sub-algorithms. Decision values are linearly
combined with weights that are updated online using an active
fusion method based on performing entropic projections (e-
projections) onto convex sets describing the sub-algorithms.
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Adaptive learning methods based on orthogonal projections
are successfully used in some computer vision and pattern
recognition problems [1], [2]. A multiple classifier system
is useful for difficult pattern recognition problems, especially
when large class sets and noisy data are involved, by allowing
the use of arbitrary feature descriptors and classification proce-
dures at the same time [3]. Instead of determining the weights
using orthogonal projections as in [1], [2], we introduce the
entropic e-projection approach which is based on a generalized
projection onto a convex set.

The studies in the field of collective recognition, which were
started in the mid 1950s, found wide application in practice
during the last decade, leading to solutions to complex, large-
scale applied problems [4]. One of the first examples of the
use of multiple classifiers was given by Dasarathy in [5]
in which he introduced the concept of composite classifier
systems as a means of achieving improved recognition system
performance compared to employing the classifier components
individually. The method is illustrated by studying the case of
the linear/NN(Nearest Neighbor) classifier composite system.
Kumar and Zhang used multiple classifiers for palmprint
recognition by characterizing the user’s identity through the
simultaneous use of three major palmprint representations and
achieved better performance than either one individually [6]. A
multiple classifier fusion algorithm is proposed for developing
an effective video based face recognition method [7]. Garcia
and Puig present results showing that pixel-based texture
classification can be significantly improved by integrating
texture methods from multiple families, each evaluated over
multisized windows [8]. This technique consists of an initial
training stage that evaluates the behavior of each considered
texture method when applied to the given texture patterns of
interest over various evaluation windows of different size.

In this article, the EADF framework is applied to a computer
vision based wildfire detection problem. The system based on
this method is currently being used in more than 60 forest
fire lookout towers in the Mediterranean region. The proposed
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automatic video based wildfire detection algorithm is based on
five sub-algorithms: (i) slow moving video object detection,
(ii) smoke-colored region detection, (iii) wavelet transform
based region smoothness detection, (iv) shadow detection
and elimination, (v) covariance matrix based classification.
Each sub-algorithm decides on the existence of smoke in the
viewing range of the camera separately. Decisions from sub-
algorithms are combined with the adaptive decision fusion
method. Initial weights of the sub-algorithms are determined
from actual forest fire videos and test fires. They are updated
by using entropic e-projections onto hyperplanes defined by
the fusion weights. It is assumed that there is an oracle moni-
toring the decisions of the combined algorithm. In the wildfire
detection case, the oracle is a security guard. Whenever a
fire is detected the decision should be acknowledged by the
security guard. The decision algorithm will also produce false
alarms in practice. Whenever an alarm occurs, the system asks
the security guard to verify its decision. If it is incorrect the
weights are updated according to the decision of the security
guard. The goal of the system is not to replace the security
guard, but to provide a supporting tool to help him or her. The
attention span of a typical security guard is only 20 minutes
in monitoring stations. It is also possible to use feedback at
specified intervals and run the algorithm autonomously at other
times. For example, the weights can be updated when there is
no fire in the viewing range of the camera and then the system
can be run without feedback.

The paper is organized as follows: Entropy functional based
Adaptive Decision Fusion (EADF) framework is described in
Section II. The first part of this section describes our previous
weight update algorithm which is obtained by orthogonal
projections onto hyperplanes [1], the second part proposes
an entropy based e-projection method for weight update of
the sub-algorithms. Section III introduces the video based
wildfire detection problem. In Section IV, each one of the five
sub-algorithms which make up the compound (main) wildfire
detection algorithm are described. In Section V, experimental
results are presented and the proposed online active fusion
method is compared with the universal linear predictor and
the weighted majority algorithms. The proposed framework is
not restricted to the wildfire detection problem. It can also be
used in other real-time intelligent video analysis applications
in which a security guard is available. The proposed EADF
method is also evaluated on a dataset from the UCI machine
learning repository [9]. Well-known classifiers (SVM, K-
NN) are combined using EADF. During the training stage,
individual decisions of classifiers are used to find the weight
of each classifier in the composite EADF classifier. Finally,
conclusions are drawn in Section VI.

II. ADAPTIVE DECISION FUSION (ADF) FRAMEWORK

Let the compound algorithm be composed of M -many de-
tection sub-algorithms: D1, ..., DM . Upon receiving a sample
input x at time step n, each sub-algorithm yields a decision
value Di(x, n) ∈ R centered around zero. If Di(x, n) > 0,
it means that the event is detected by the i-th sub-algorithm.
Otherwise, it is assumed that the event did not happen. The

type of the sample input x may vary depending on the algo-
rithm. It may be an individual pixel, or an image region, or the
entire image depending on the sub-algorithm of the computer
vision problem. For example, in the wildfire detection problem
presented in Section III, the number of sub-algorithms is M=5
and each pixel at the location x of incoming image frame is
considered as a sample input for every detection algorithm.

Let D(x, n) = [D1(x, n), ..., DM (x, n)]T , be the vector of
decision values of the sub-algorithms for the pixel at location
x of input image frame at time step n, and w(x, n) =
[w1(x, n), ..., wM (x, n)]T be the current weight vector. For
simplicity we will drop x in w(x, n) for the rest of the paper.

We define

ŷ(x, n) = DT(x, n)w(n) =
∑
i

wi(n)Di(x, n) (1)

as an estimate of the correct classification result y(x, n) of the
oracle for the pixel at location x of input image frame at time
step n, and the error e(x, n) as e(x, n) = y(x, n) − ŷ(x, n).
As it can be seen in the next subsection, the main advantage
of the proposed algorithm compared to other related methods
in [10], [11], [12], is the controlled feedback mechanism based
on the error term. Weights of the algorithms producing an
incorrect (correct) decision is reduced (increased) iteratively at
each time step. Another advantage of the proposed algorithm
is that it does not assume any specific probability distribution
about the data.

A. Set Theoretic Weight Update Algorithm based on Orthog-
onal Projections

In this subsection, we first review the orthogonal projection
based weight update scheme [1]. Ideally, weighted decision
values of sub-algorithms should be equal to the decision value
of y(x, n) the oracle:

y(x, n) = DT (x, n)w (2)

which represents a hyperplane in the M-dimensional space,
RM . Hyperplanes are closed and convex in RM . At time
instant n, DT (x, n)w(n) may not be equal to y(x, n). In
our approach, the next set of weights are determined by
projecting the current weight vector w(n) onto the hyperplane
represented by Eq. 2. The orthogonal projection w(n + 1)
of the vector of weights w(n) ∈ RM onto the hyperplane
y(x, n) = DT (x, n)w is the closest vector on the hyperplane
to the vector w(n).

Let us formulate the problem as a minimization problem:

min
w∗
∥w∗ −w(n)∥2

subject to DT (x, n)w∗ = y(x, n)
(3)

The solution can be obtained by using Lagrange multipliers.
The solution is called the metric projection mapping solution.
However we use the term orthogonal projection because the
line going through w∗ and w(n) is orthogonal to the hyper-
plane. If we define the next set of weights as w(n+1) = w∗

it can be obtained by the following iteration:

w(n+ 1) = w(n) +
e(x, n)

∥D(x, n)∥22
D(x, n) (4)
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Hence, the projection vector is calculated according to Eq. 4.
Note that Eq. 4 is identical to the normalized least mean
square (NLMS) algorithm with update parameter µ = 1. In
the NLMS algorithm 0 < µ < 2 should be satisfied for
convergence [13]. According to the projection onto convex
sets (POCS) theory, when there are a finite number of convex
sets, repeated cyclical projections onto these sets converge to
a vector in the intersection set [14], [15], [16], [17], [18]. The
case of an infinite number of convex sets is studied in [2],
[19], [20]. They propose to use the convex combination of
the projections onto the most recent q sets for online adaptive
algorithms [2]. In Section II-C the block projection version
of the algorithm that deals with the case when there are an
infinite number of convex sets is presented.

Whenever a new input arrives, another hyperplane based on
the new decision values D(x, n) of sub-algorithms, is defined
in RM

y(x, n+ 1) = DT (x, n+ 1)w∗ (5)

This hyperplane will not be the same as y(x, n) =
DT (x, n)w(n) hyperplane in general. The next set of weights,
w(n + 2), are determined by projecting w(n + 1) onto
the hyperplane in Eq. 5. When there are a finite number
of hyperplanes, iterated weights that are obtained by cyclic
projections onto these hyperplanes converge to the intersection
of hyperplanes [14], [21], [22].

The pseudo-code of the orthogonal projections onto hy-
perplanes based algorithm is given in Algorithm 1 which
summarizes the projection onto one hyperplane. The block
diagram of the algorithm for wildfire detection problem is
shown in Fig. 4. The weights are initialized before the first
sample arrives. Then for each incoming sample the orthogonal
projection algorithm is performed to find the new set of
weights. The weights are adjusted so that their sum is 1. The
estimated output ŷ(x, n) is passed through a nonlinear function
to find the classification result for the current sample.

The relation between support vector machines and orthog-
onal projections onto halfplanes was established in [17], [23]
and [24]. As pointed out in [23] SVM is very successful
in batch settings, but it cannot handle online problems with
drifting concepts in which the data arrive sequentially.

Algorithm 1 The pseudo-code for the POCS based algorithm
for i = 1 to M do
wi(0) = 1

M , Initialization
end for
For each sample at time step n.
e(x, n) = y(x, n)− ŷ(x, n)
for i = 1 to M do
wi(n)← wi(n) + µ e(x,n)

∥D(x,n)∥2
2
Di(x, n)

end for
for i = 1 to M do
wi(n)← wi(n)∑

j wj(n)

end for
ŷ(x, n) =

∑
i wi(n)Di(x, n)

if ŷ(x, n) ≥ 0 then
return 1

else
return -1

end if

B. Entropic Projection (E-Projection) Based Weight Update
Algorithm

The l1 norm based minimization approaches provide suc-
cessful signal reconstruction results in compressive sensing
problems [25], [26], [27], [28]. However, the l0 and l1 norm
based cost functions used in compressive sensing problems
are not differentiable everywhere. The entropy functional
approximates the l1 norm

∑
i |wi(n)| for wi(n) > 0 [29].

Therefore, it can be used to find approximate solutions to the
inverse problems defined in [25], [26] and other applications
requiring l1 norm minimization. Bregman developed convex
optimization algorithms in the 1960’s and his algorithms are
widely used in many signal reconstruction and inverse prob-
lems [15], [30], [31], [32], [33], [22], [2]. Bregman’s method
provides globally convergent iterative algorithms for problems
with convex, continuous and differentiable cost functionals
g(.):

min
w∈C

g(w) (6)

such that

DT (x, n)w(n) = y for each time index n (7)

In the EADF framework, the cost function is g(w) =∑M
i wi(n)log(wi(n)) and each equation in (7) represents a

hyperplane H(x, n) ∈ RM which is a closed and convex
set. In Bregman’s method, the iterative algorithm starts with
an arbitrary initial estimate and successive e-projections are
performed onto the hyperplanes H(x, n), n = 1, 2, ..., N in
each step of the iterative algorithm in a cyclic manner. In this
case, we may have infinitely many hyperplanes but we will
still use Bregman’s e-projection approach.

The e-projection onto a closed and convex set is a general-
ized version of the metric projection mapping onto a convex
set [29]. Let w(n) denote the weight vector for the nth sample.
Its’ e-projection w∗ onto a closed convex set C with respect
to a cost functional g(w) is defined as follows:

w∗ = arg min
w∈C

L(w,w(n)) (8)
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where

L(w,w(n)) = g(w)− g(w(n))− ⟨▽g(w),w −w(n)⟩ (9)

and ⟨., .⟩ represents the inner product.
In the adaptive learning problem, we have a hyperplane

H(x, n) : DT (x, n).w(n + 1) = y(x, n) for each sample x.
For each hyperplane H(x, n), the e-projection (8) is equivalent
to

▽g(w(n+ 1)) = ▽g(w(n)) + λD(x,n) (10)
DT (x, n).w(n+ 1) = y(x, n) (11)

where λ is the Lagrange multiplier. As pointed out above,
the e-projection is a generalization of the metric projection
mapping. When the cost functional is the Euclidean cost func-
tional g(w) =

∑
i wi(n)

2 the distance L(w1,w2) becomes
the l2 norm square of the difference vector (w1 − w2), and
the e-projection simply becomes the well-known orthogonal
projection onto a hyperplane.

When the cost functional is the entropy functional g(w) =∑
i wi(n) log(wi(n)), the e-projection onto the hyperplane

H(x, n) leads to the following update equations:

wi(n+ 1) = wi(n)e
λDi(x,n), i = 1, 2, ...,M (12)

where the Lagrange multiplier λ is obtained by inserting (12)
into the hyperplane equation:

DT (x, n)w(n+ 1) = y(x, n) (13)

because the e-projection w(n+1) must be on the hyperplane
H(x, n) in Eq. 11. When there are three hyperplanes, one
cycle of the projection algorithm is depicted in Fig. 1. If the
projections are continued in a cyclic manner the weights will
converge to the intersection of the hyperplanes, wc.

Fig. 1. Geometric interpretation of the entropic-projection method: Weight
vectors corresponding to decision functions at each frame are updated to
satisfy the hyperplane equations defined by the oracle’s decision y(x, n) and
the decision vector D(x, n). Lines in the figure represent hyperplanes in RM .
Weight update vectors converge to the intersection of the hyperplanes. Notice
that e-projections are not orthogonal projections.

The above set of equations are used in signal reconstruc-
tion from Fourier Transform samples and the tomographic
reconstruction problem [16], [30]. The entropy functional is
defined only for positive real numbers which coincides with
our positive weight assumption.

To find the value of λ at each iteration a nonlinear equation
has to be solved (Eqs. 12 and 13). In [34], globally convergent
algorithms are developed without finding the exact value of the

Lagrange multiplier λ. However, the tracking performance of
the algorithm is very important. Weights have to be rapidly
updated according to the oracle’s decision.

In our application, we first use the second order Taylor series
approximation of eλ̂Di(x,n) from Eq. 12 and obtain:

wi(n+1) ≈ wi(n)(1+ λ̂Di(x, n)+
λ̂2D2

i (x, n)

2
), i = 1, 2, ...,M (14)

Multiplying both sides by Di(x, n), summing over i and using
Eq. 13 we get the following equation:

y(x, n) ≈
(
1 + λ̂

M∑
i=1

Di(x, n)wi(n) + λ̂2
M∑
i=1

D2
i (x, n)wi(n)

2

)
(15)

We can solve for the initial value of λ from Eq. 15 analytically.
We insert the two solutions of Eq. 15 into Eq. 12 and pick the
w(n + 1) vector closest to the hyperplane in Eq. 13. This is
determined by checking the error e(x, n). We experimentally
observed that this estimate provides convergence in forest fire
application. To determine a more accurate value of Lagrange
multiplier λ we developed a heuristic search method based on
the estimate λ̂. If e(x, n) < 0, we choose λmin = λ̂ − 2|λ̂|,
λmax = λ̂ and if e(x, n) > 0, we choose λmin = λ̂, λmax =
λ̂+2|λ̂| as the upper and lower bounds of the search window.
We only look at R values uniformly distributed between these
limits to find the best λ̂ that produces the lowest error. In our
wildfire detection application, we use R = 4 as the length of
the search window. We could have used a fourth order Taylor
series approximation in Eq. 14 and still obtained an analytical
solution. After fourth order approximations, a solution has to
be numerically found. There are very efficient polynomial root
finding algorithms in the literature.

The pseudo-code for the e-projection based adaptive deci-
sion fusion based algorithm is given in Algorithm 2, which ex-
plains projection onto one hyperplane. In the Algorithm λmin

and λmax are determined from the Taylor series approximation
as described above. The temporary variables v and wT are
used to find the λ value that produces the lowest error. A
different λ value is determined for each sample at each time
step. Obviously a new value of λ has to be computed whenever
a new observation x arrives.

Instead of the Shannon entropy xlogx, it is possible to use
the regular entropy function logx as the cost functional [34].
In this case,

g(w) = −
∑
i

log(wi(n)) (16)

which is convex for wi(n) > 0. The e-projection onto the
hyperplane H(x, n) can be obtained as follows:

wi(n+ 1) =
wi(n)

1 + λwi(n)Di(x, n)
, i = 1, 2, ...,M (17)

where the update parameter λ can again be obtained by
inserting Eq. 17 into the hyperplane constraint in Eq. 13.

Penalizing the wi(n) = 0 case with an infinite cost may not
be suitable for online adaptive fusion problems. However, the
cost function:

g(w) = −
∑
i

log(wi(n) + 1) (18)
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Algorithm 2 The pseudo-code for the EADF algorithm
for i = 1 to M do
wi(0) = 1

M , Initialization
end for
For each sample at time step n.
for λ = λmin to λmax do

for i = 1 to M do
vi(n) = wi(n)
vi(n)← vi(n)e

λDi(x,n)

end for
if ∥y(x, n) −

∑
i vi(n)Di(x, n)∥2 < ∥y(x, n) −∑

i wi(n)Di(x, n)∥2 then
wT(n)← v(n)

end if
end for
w(n)← wT(n)
for i = 1 to M do
wi(n)← wi(n)∑

j wj(n)

end for
ŷ(x, n) =

∑
i wi(n)Di(x, n)

if ŷ(x, n) ≥ 0 then
return 1

else
return -1

end if

is always positive, convex and differentiable for wi(n) ≥ 0
In this case, weight update equation becomes:

wi(n+ 1) =
wi(n)− λ(wi(n) + 1)Di(x, n)

1 + λ(wi(n) + 1)Di(x, n)
, i = 1, 2, ...,M

(19)
where the update parameter λ should be determined using by
substituting Eq. 19 into Eq. 13. Finding the exact value of
λ when Eq. 13 is only a four dimensional hyperplane, using
numerical methods is not difficult. In the forest fire detection
problem we have only five sub-algorithms. However, when the
number of sub-algorithms are high, new numerical methods
should be determined for cost functions in Eqs. 16 and 18.

For the wildfire detection problem it is desirable that each
sub-algorithm should contribute to the compound algorithm
because they characterize a feature of wildfire smoke. There-
fore weights of algorithms should be between 0 and 1. We
want to penalize extreme weight values 0 and 1 more com-
pared to values in between. The entropy functional achieves
this. On the other hand the commonly used Euclidean norm
penalizes high weight values more compared to zero weight.

C. Block Projection Method

Block projection based methods are developed for inverse
problems and active fusion methods [2], [19], [20], [30]. In
this case, sets are assumed to arrive sequentially and q of the
most recently received observation sets are used to update the
weights in the block projection approach. Adaptive projected
subgradient method (APSM) works by taking a convex com-
bination of the projections of the current weight vector onto
those q sets. The weights calculated using this method are

shown to converge to the intersection of hyperplanes [2], i.e,
for each sample x there exist w∗ such that:

w∗ ∈
∩

n≥n0

H(x, n) (20)

where n0 ∈ N.
The next values of weights w(n+1) can be calculated from

the q projections PH(x,j)(w(n)) for j ∈ Sn = {n−q+1, n−
q + 2, . . . , n} using the APSM as follows:

w(n+1) = w(n)+µn

∑
j∈Sn

αj(n)PH(x,j)(w(n))−w(n)


(21)

where αj(n) is a weight used to control the contribution of
the projection onto jth hyperplane and

∑
j∈Sn

αj(n) = 1, any
µn can be chosen from (0, 2Mn) where:

Mn =

∑
j∈Sn

αj(n)∥PH(x,j)(w(n))−w(n)∥2
∥
∑

j∈Sn
αj(n)PH(x,j)(w(n))−w(n)∥2

(22)

The weights of projections are usually chosen as αj(n) =
1/q and µn can be chosen as 1 since Mn ≥ 1 is always
true [2]. Both orthogonal and entropic projections can be
used as the projection operator, PH(x,j). We experimentally
observed the convergence of the entropic method. Proof of
global convergence of the block entropic projection method
will be studied in the future.

III. AN APPLICATION: COMPUTER VISION BASED
WILDFIRE DETECTION

The Entropy function based Adaptive Decision Fusion
(EADF) framework described in detail in the previous section
with tracking capability is especially useful when the online
active learning problem is of a dynamic nature with drifting
concepts [35], [36], [37]. In the video based wildfire detection
problem introduced in this section, the nature of forestal
recordings vary over time due to weather conditions and
changes in illumination, which makes it necessary to deploy
an adaptive wildfire detection system. It is not feasible to
develop one strong fusion model with fixed weights in this
setting with drifting nature. An ideal online active learning
mechanism should keep track of drifts in video and adapt
itself accordingly. The projections in Eq. 12 and Eq. 4 adjust
the importance of individual sub-algorithms by updating the
weights according to the decisions of the oracle.

Manned lookout posts are widely available in forests all
around the world to detect wildfires. Surveillance cameras
can be placed in these surveillance towers to monitor the
surrounding forestal area for possible wildfires. Furthermore,
they can be used to monitor the progress of the fire from
remote centers.

As an application of EADF, a computer vision based method
for wildfire detection is presented in this article. Security
guards have to work 24 hours in remote locations under
difficult circumstances. They may simply get tired or leave the
lookout tower for various reasons. Therefore, computer vision
based video analysis systems capable of producing automatic
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fire alarms are necessary to help the security guards to reduce
the average forest fire detection time.

Cameras, once installed, operate at forest watch towers
throughout the fire season for about six months which is
mostly dry and sunny in the Mediterranean region. There
is usually a guard in charge of the cameras, as well. The
guard can supply feed-back to the detection algorithm after
the installation of the system. Whenever an alarm is issued,
she/he can verify it or reject it. In this way, she/he can
participate in the learning process of the adaptive algorithm.
The proposed active fusion algorithm can also be used in other
supervised learning problems where classifiers combinations
through feedback is required.

As described in the following section, the main wildfire
detection algorithm is composed of five sub-algorithms. Each
algorithm has its own decision function yielding a zero-mean
real number for slow moving regions at every image frame
of a video sequence. Decision values from sub-algorithms
are linearly combined and weights of sub-algorithms are
adaptively updated in our approach.

There are several approaches on automatic forest fire de-
tection in the literature. Some of the approaches are directed
towards detection of the flames using infra-red and/or visible-
range cameras and some others aim at detecting the smoke due
to wildfire [38], [39], [40], [41], [42]. There are recent papers
on sensor based fire detection [43], [44], [45]. Infrared cameras
and sensor based systems have the ability to capture the rise
in temperature, however, they are much more expensive com-
pared to regular pan-tilt-zoom (PTZ) cameras. An intelligent
space framework is described for indoor fire detection in [46].
However, in this paper, an outdoor (forest) wildfire detection
method is proposed.

It is almost impossible to view flames of a wildfire from
a camera mounted on a forest watch tower unless the fire is
very near to the tower. However, smoke rising up in the forest
due to a fire is usually visible from long distances. A snapshot
of typical wildfire smoke captured by a lookout tower camera
from a distance of 5 km is shown in Fig. 2.

Guillemant and Vicente [42] based their method on the
observation that the movements of various patterns, like smoke
plumes, produce correlated temporal segments of gray-level
pixels. They utilized fractal indexing using a space-filling
Z-curve concept along with instantaneous and cumulative
velocity histograms for possible smoke regions. They made
smoke decisions about the existence of smoke according to
the standard deviation, minimum average energy, and the shape
and smoothness of these histograms. It is possible to include
most of the currently available methods as sub-algorithms in
the proposed framework and combine their decisions using the
proposed EADF method.

Smoke at far distances (> 100 m to the camera) exhibits
different spatio-temporal characteristics than nearby smoke
and fire [47], [48], [49]. This demands specific methods
explicitly developed for smoke detection at far distances rather
than using nearby smoke detection methods described in [50].
The proposed approach is in accordance with the ‘weak’
Artificial Intelligence (AI) framework [51] introduced by Hu-
bert L. Dreyfus, as opposed to ‘generalized’ AI. According

Fig. 2. Snapshot of typical wildfire smoke captured by a forest watch tower
which is 5 km away from the fire (rising smoke is marked with an arrow).

to this framework, each specific problem in AI should be
addressed as an individual engineering problem with its own
characteristics [52], [53].

IV. BUILDING BLOCKS OF WILDFIRE DETECTION
ALGORITHM

Wildfire detection algorithm is developed to recognize the
existence of wildfire smoke within the viewing range of the
camera monitoring forestal areas. The proposed wildfire smoke
detection algorithm consists of five main sub-algorithms:
(i) slow moving object detection in video, (ii) smoke-colored
region detection, (iii) wavelet transform based region smooth-
ness detection, (iv) shadow detection and elimination, (v) co-
variance matrix based classification, with decision functions,
D1(x, n), D2(x, n), D3(x, n), D4(x, n) and D5(x, n), re-
spectively, for each pixel at location x of every incoming
image frame at time step n. Computationally efficient sub-
algorithms are selected in order to realize a real-time wildfire
detection system working in a standard PC. The decision
functions are combined in a linear manner and the weights
are determined according to the weight update mechanism
described in Section II.

Decision functions Di, i = 1, ...,M of sub-algorithms
do not produce binary values 1 (correct) or −1 (false), but
they produce real numbers centered around zero for each
incoming sample x. If the number is positive (negative), then
the individual algorithm decides that there is (not) smoke due
to forest fire in the viewing range of the camera. Output values
of decision functions express the confidence level of each
sub-algorithm. The higher the value, the more confident the
algorithm.

The first four sub-algorithms are described in detail in [54]
which is available online at the EURASIP webpage. We
recently added the fifth sub-algorithm to our system. It is
briefly reviewed below.
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A. Covariance Matrix Based Region Classification

The fifth sub-algorithm deals with the classification of the
smoke colored moving regions. We first obtain a mask from
the intersection of the first two sub-algorithms and use the
obtained smoke colored moving regions as the input to the
fifth algorithm. The regions are passed as bounding boxes
of the connected regions of the mask. A region covariance
matrix [55] consisting of discriminative features is calculated
for each region. For each pixel in the region, a 9-dimensional
feature vector zk is calculated as follows:

zk =

[
x1 x2 Y (x1, x2) U(x1, x2) V (x1, x2)

(23)∣∣∣∣dY (x1, x2)

dx1

∣∣∣∣ ∣∣∣∣dY (x1, x2)

dx2

∣∣∣∣ ∣∣∣∣d2Y (x1, x2)

dx2
1

∣∣∣∣ ∣∣∣∣d2Y (x1, x2)

dx2
2

∣∣∣∣
]T

where k is the label of a pixel, (x1, x2) is the location of the
pixel, Y, U, V are the components of the representation of the
pixel in YUV color space, dY (x1,x2)

dx1
and dY (x1,x2)

dx2
are the

horizontal and vertical derivatives of the region respectively,
calculated using the filter [-1 0 1], d2Y (x1,x2)

dx2
1

and d2Y (x1,x2)
dx2

2

are the horizontal and vertical second derivatives of the region
calculated using the filter [-1 2 -1], respectively.

The feature vector for each pixel can be represented as
follows:

zk = [zk(i)]
T (24)

where, zk(i) is the ith entry of the feature vector. This feature
vector is used to calculate the 9 by 9 covariance matrix
of the regions using the fast covariance matrix computation
formula [56]:

CR = [cR(i, j)] =

(
1

n− 1

[
n∑

k=1

zk(i)zk(j)− Zkk

])
(25)

where

Zkk =
1

n

n∑
k=1

zk(i)
n∑

k=1

zk(j)

where n is the total number of pixels in the region and cR(i, j)
is the (i, j)th component of the covariance matrix.

The region covariance matrices are symmetric, therefore,
we only need half of the elements of the matrix for
classification. We also do not need the first 3 elements
cR(1, 1), cR(2, 1), cR(2, 2) when using the lower diagonal ele-
ments of the matrix, because these are the same for all regions.
Then, we need a feature vector fR with 9 × 10/2 − 3 = 42
elements for each region. For a given region, the final feature
vector does not depend on the number of pixels in the region;
it only depends on the number of features in zk.

A Support Vector Machine (SVM) with RBF kernel is
trained with the region covariance feature vectors of smoke
regions in the training database. We used 18680 images used
to train the SVM. The number of positive images which have
actual smoke is 7011, and the rest are negative images that
do not have smoke. Sample positive and negative images are

TABLE I
CONFUSION MATRIX OF THE TRAINING SET

Predicted Labels
Not Smoke Smoke

Actual Not Smoke 11342/(97.2)% 327/ (3.8%)
Labels Smoke 49/ (0.7%) 6962/(99.3%)

shown in Fig. 3. The confusion matrix for the training set is
given in Table I. The success rate is 99.3% for the positive
images and 97.2% for the negative images.

(a) Negative training images.

(b) Positive training images

Fig. 3. Positive and negative images from the training set.

The LIBSVM [57] software library is used to obtain the
posterior class probabilities, pR = Pr(label = 1|fR), where
label = 1 corresponds to a smoke region. In this software
library, posterior class probabilities are estimated by approxi-
mating the posteriors with a sigmoid function as in [58]. If the
posterior probability is larger than 0.5, the label is 1 and the
region contains smoke according to the covariance descriptor.
The decision function for this sub-algorithm is defined as
follows:

D5(x, n) = 2pR − 1 (26)

where 0 < pR < 1 is the estimated posterior probability
that the region contains smoke. In [55], a distance measure
based on eigenvalues are used to compare covariance matrices,
but we found that individual covariance values also provide
satisfactory results in this problem.

As pointed out above, the decision results of five sub-
algorithms, D1, D2, D3, D4 and D5, are linearly combined to
reach a final decision on a given pixel; whether it is a pixel of
a smoke region or not. Morphological operations are applied
to the detected pixels to mark the smoke regions. The number
of connected smoke pixels should be larger than a threshold to
issue an alarm for the region. If a false alarm is issued during
the training phase, the oracle gives feedback to the algorithm
by declaring a no-smoke decision value (y = −1) for the
false alarm region. Initially, equal weights are assigned to each
sub-algorithm. There may be large variations between forestal
areas and substantial temporal changes may occur within the
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same forestal region. As a result, weights of individual sub-
algorithms will evolve in a dynamic manner over time.

Fig. 4. Flowchart of the weight update algorithm for one image frame.

In real-time operating mode the PTZ cameras are in con-
tinuous scan mode visiting predefined preset locations. In this
mode, constant monitoring from the oracle can be relaxed by
adjusting the weights for each preset once, and then use the
same weights for successive classifications. Since the main
issue is to reduce false alarms, the weights can be updated
when there is no smoke in the viewing range of each preset
and after that, the system becomes autonomous. The cameras
stop at each preset and run the detection algorithm for some
time before moving to the next preset. By calculating separate
weights for each preset, we are able to reduce false alarms.

V. EXPERIMENTAL RESULTS

A. Experiments on wildfire detection
The proposed wildfire detection scheme with entropy func-

tional based active learning method is implemented on a PC
with an Intel Core Duo CPU 2.6GHz processor and tested
with forest surveillance recordings captured from cameras
mounted on top of forest watch towers near Antalya and Mugla
provinces in Mediterranean region in Turkey. The weather
is stable with sunny days throughout the entire summer in
Mediterranean. If it happens to rain there is no possibility
of forest fire. The installed system successfully detected three
forest fires in the summer of 2008. The system was also
independently tested by the Regional Technology Clearing
House of San Diego State University in California in April
2009, and it detected the test fire and did not produce any
false alarms during the trials. A snapshot from this test is
presented in Fig. 5. The system also detected another forest
fire in Cyprus in 2010. The software is currently being used
in more than 60 forest watch towers in Turkey, Greece and
Cyprus.

The proposed EADF strategy is compared with the univer-
sal linear predictor (ULP) scheme proposed by Singer and
Feder [59]. The ULP adaptive filtering method is modified to
the wildfire detection problem in an online learning frame-
work. In the ULP scheme, decisions of individual algorithms
are linearly combined, similar to Eq. 1 as follows:

ŷu(x, n) =
∑
i

vi(n)Di(x, n) (27)

Fig. 5. A snapshot from an independent test of the system by the Regional
Technology Clearing House of San Diego State University in California in
April 2009. The system successfully detected the test fire and did not produce
any false alarms. The detected smoke regions are marked with rectangles.

where the weights, vi(n), are updated according to the ULP
algorithm, which assumes that the data (or decision values
Di(x, n), in our case) are governed by some unknown prob-
abilistic model P [59]. The objective of a universal predictor
is to minimize the expected cumulative loss. An explicit
description of the weights, vi(n), of the ULP algorithm is
given as follows:

vi(n+ 1) =
exp(− 1

2cℓ(y(x, n), Di(x, n)))∑
j exp(−

1
2cℓ(y(x, n), Dj(x, n)))

(28)

where c is a normalization constant and the loss function for
the i-th decision function is:

ℓ(y(x, n), Di(x, n)) = [y(x, n)−Di(x, n)]
2 (29)

The constant c is taken as 4 as indicated in [59]. The universal
predictor based algorithm is summarized in Algorithm 3.

Algorithm 3 The pseudo-code for the universal predictor
Universal Predictor(x,n)
for i = 1 to M do
ℓ(y(x, n), Di(x, n)) = [y(x, n)−Di(x, n)]

2

vi(n+ 1) =
exp(− 1

2c ℓ(y(x,n),Di(x,n)))∑
j exp(− 1

2c ℓ(y(x,n),Dj(x,n)))

end for
ŷu(x, n) =

∑
i vi(n)Di(x, n)

if ŷu(x, n) ≥ 0 then
return 1

else
return -1

end if

In the experiments, we compared eight different algorithms
named FIXED, ULP, NLMS, NLMS-B, EADF, EADF-B,
LOGX and LOG(X+1). NLMS-B and EADF-B are block
projection versions of NLMS and EADF based methods with
block size q = 5. LOGX and LOG(X+1) represent the
algorithms that use −logx and −log(x + 1) as the distance
functions. FIXED represents the unadaptive method that uses
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fixed weights and ULP is the universal linear predictor based
approach. In Tables II, IV and V, forest surveillance recordings
containing actual forest fires and test fires, as well as, video
sequences with no fires are used.

Fig. 6. Snapshots from the test videos in Table II. The first two and the last
two images are from the same video sequences.

In Table II, 10 video sequences that contain wildfire smoke
are tested in terms of true detection rates, which is defined
as the number of correctly classified frames containing smoke
divided by the total number of frames which contain smoke.
V 2, V 4, V 5 and V 10 contain actual forest fires recorded by
the cameras at forest watch towers, and the others contain
artificial test fires. FIXED and ULP methods usually have
higher detection rates but there is not a significant difference
from the adaptive methods. Our aim is to decrease false
alarms without reducing the detection rates too much. Table IV
is generated from the first alarm frames and times of the
algorithms. The times are comparable to each other and all
algorithms produced alarms in less than 13 seconds. Snapshots
from the test results in Table II are given in Fig. 6. For
the wildfire detection problem another important comparison
criteria is false negative (miss) detection rate, which is defined
as the number of incorrectly classified frames containing
smoke divided by the total number of frames which contain
smoke. In Table III, the video sequences that contain wildfire
smoke are tested in terms of false negative (miss) detection
rates.

A set of video clips containing clouds, moving cloud
shadows, fog and other moving regions that usually cause
false alarms is used to generate Table V. The algorithms are
compared in terms of false alarm rates, which is defined as
the number of misclassified frames that do not contain smoke,
divided by the total number of frames that do not contain
smoke. Except for one video sequence, EADF method pro-
duces the lowest false alarm rate in the dataset. The algorithms
that use adaptive fusion strategy significantly reduce the false
alarm rate of the system compared to the non-adaptive methods

TABLE II
EIGHT DIFFERENT ALGORITHMS ARE COMPARED IN TERMS OF TRUE
DETECTION RATES IN VIDEO CLIPS THAT CONTAIN WILDFIRE SMOKE.

True Detection Rates
Video Frames FIXED ULP NLMS NLMS-B EADF EADF-B LOGX LOG(X+1)
V1 768 87.63% 87.63% 87.63% 87.63% 87.63% 87.63% 87.89% 87.63%
V2 300 89.67% 89.67% 83.00% 89.66% 81.33% 86.00% 84.67% 89.66%
V3 550 70.36% 70.36% 68.18% 68.18% 67.09% 68.18% 67.09% 68.00%
V4 1000 94.90% 94.90% 90.80% 94.10% 90.50% 92.40% 93.30% 93.70%
V5 1000 96.30% 95.50% 91.10% 92.90% 91.90% 92.70% 92.40% 93.40%
V6 439 80.87% 80.87% 80.41% 80.41% 80.41% 80.41% 80.41% 80.41%
V7 770 85.71% 85.71% 85.71% 85.71% 85.84% 85.71% 85.71% 85.97%
V8 1060 98.68% 99.15% 98.86% 98.68% 98.77% 98.67% 98.96% 98.77%
V9 410 80.24% 80.24% 80.00% 80.00% 80.00% 80.00% 80.00% 80.00%
V10 1000 82.30% 82.30% 79.30% 82.40% 89.50% 90.70% 91.10% 81.30%
Avg. - 86.67% 86.63% 84.50% 85.97% 85.30% 86.24% 86.15% 85.88

TABLE III
EIGHT DIFFERENT ALGORITHMS ARE COMPARED IN TERMS OF FALSE
NEGATIVE (MISS) DETECTION RATES IN VIDEO CLIPS THAT CONTAIN

WILDFIRE SMOKE.

Miss Detection Rates
Video Frames FIXED ULP NLMS NLMS-B EADF EADF-B LOGX LOG(X+1)
V1 768 12.37% 12.37% 12.37% 12.37% 12.37% 12.37% 12.11% 12.37%
V2 300 10.33% 10.33% 17.00% 10.34% 18.67% 14.00% 15.33% 10.34%
V3 550 29.64% 29.64% 31.82% 31.81% 32.91% 31.82% 32.91% 32.00%
V4 1000 5.10% 5.10% 9.20% 5.90% 9.50% 7.60% 6.70% 6.30%
V5 1000 3.70% 4.50% 8.90% 7.10% 8.10% 7.30% 7.60% 6.60%
V6 439 9.13% 9.13% 9.59% 9.59% 9.59% 9.59% 9.59% 9.59%
V7 770 4.29% 4.29% 4.29% 4.29% 4.16% 4.29% 4.29% 4.03%
V8 1060 1.32% 0.85% 1.14% 1.32% 1.23% 1.33% 1.04% 1.23%
V9 410 19.76% 19.76% 20.00% 20.00% 20.00% 20.00% 20.00% 20.00%
V10 1000 17.70% 17.70% 20.70% 17.60% 20.50% 19.30% 8.90% 18.70%
Average - 13.33% 13.37% 15.50% 14.03% 14.70% 13.76% 13.85% 14.12

TABLE IV
EIGHT DIFFERENT ALGORITHMS ARE COMPARED IN TERMS OF FIRST

ALARM FRAMES AND TIMES IN VIDEO CLIPS THAT CONTAIN WILDFIRE
SMOKE.

First Alarm Frame / Time (secs.)
Video FIXED ULP NLMS NLMS-B EADF EADF-B LOGX LOG(X+1)
V1 64/12.80 64/12.80 64/12.80 64/12.80 64/12.80 64/12.80 64/12.80 64/12.80
V2 42/8.40 42/8.40 67/13.40 42/8.40 68/13.60 53/10.60 58/11.60 42/8.40
V3 26/5.20 26/5.20 37/7.40 37/7.40 44/8.80 37/7.40 43/8.60 38/7.60
V4 25/5.00 25/5.00 58/11.60 25/5.00 59/11.80 33/6.60 25/5.00 43/8.60
V5 32/6.40 35/7.00 53/10.60 35/7.00 54/10.80 35/7.00 35/7.00 36/7.20
V6 21/4.20 21/4.20 21/4.20 21/4.20 21/4.20 21/4.20 21/4.20 21/4.20
V7 47/1.88 47/1.88 47/1.88 47/1.88 47/1.88 47/1.88 47/1.88 47/1.88
V8 12/1.33 12/1.33 12/1.33 12/1.33 12/1.33 12/1.33 12/1.33 12/1.33
V9 67/2.68 67/2.68 67/2.68 67/2.68 67/2.68 67/2.68 67/2.68 67/2.68
V10 33/6.60 33/6.60 50/10.00 33/6.60 51/10.20 33/6.60 33/6.60 44/8.80
Avg. 36.90/5.45 37.20/5.51 47.60/7.59 38.30/5.73 48.70/7.81 40.20/6.11 40.50/6.17 41.40/6.35

by integrating the feedback from the guard (oracle) into the
decision mechanism within the active learning framework. One
interesting result is that EADF-B and NLMS-B, which are the
versions that use the block projection method developed for
the case of infinite number of convex sets, usually produced
more false alarms than the methods that do not use block
projections.

In Fig. 7 typical false alarms issued to videos by an
untrained algorithm with decision weights equal to 1

5 are
shown.

In Fig. 8, the squared pixels errors of NLMS and EADF
based schemes are compared for the video clip V 12. The
average pixel error for a video sequence v is calculated as
follows:

Ē(v) =
1

FI

FI∑
n=1

(
en
NI

) (30)

where NI is the total number of pixels in the image frame,
FI is the number of frames in the video sequence, and en
is the sum of the squared errors for each classified pixel in
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Fig. 7. False alarms issued to videos from Table V. The first two and the last
two images are from the same video sequences. Cloud shadows, clouds, fog,
moving tree leaves, and sunlight reflecting from buildings cause false alarms
in an untrained algorithm with decision weights equal to 1

5
.

TABLE V
EIGHT DIFFERENT ALGORITHMS ARE COMPARED IN TERMS OF FALSE
ALARM RATES IN VIDEO CLIPS THAT DO NOT HAVE WILDFIRE SMOKE.

False Alarm Rates
Video Frames FIXED ULP NLMS NLMS-B EADF EADF-B LOGX LOG(X+1)
V11 6300 0.03% 0.03% 0.03% 0.03% 0.02% 0.03% 0.03% 0.03%
V12 3370 7.00% 2.97% 1.01% 1.96% 0.92% 1.01% 1.66% 0.89%
V13 7500 3.13% 3.12% 2.77% 2.77% 2.77% 2.77% 2.24% 2.77%
V14 6294 17.25% 9.64% 2.27% 2.67% 2.18% 2.40% 3.23% 4.89%
V15 6100 4.33% 4.21% 2.72% 2.75% 1.80% 2.75% 1.23% 2.97%
V16 433 11.32% 11.32% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
V17 7500 0.99% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Average - 6.29% 4.47% 1.26% 1.46% 1.10% 1.28% 1.20% 1.65%

image frame n. The figure shows the average errors for the
frames between 500 and 900 of V 12. At around the frames
510 and 800, the camera moves to a new position and weights
are reset to their initial values. The EADF algorithm achieves
convergence faster than the NLMS algorithm. The tracking
performance of the EADF algorithm is also better than the
NLMS based algorithm which can be observed after the frame
number 600, at which point some of the sub-algorithms issue
false alarms.

Fig. 8. Average squared pixel errors for the NLMS and the EADF based
algorithms for the video seuqence V 12.

In Fig. 9 the weights of two different pixels from V 12
are displayed for 140 frames. For the first pixel, D1(x, n),
D3(x, n) and D4(x, n) get closer to 1 after the 60th frame,
and therefore, their weights are reduced. For the second pixel,

D2(x, n) issues false alarms after the 4th frame; D2(x, n) and
D4(x, n) issue false alarms after the 60th frame.

(a) Adaptation of weights for a pixel at x = (55, 86) in V 12.

(b) Adaptation of weights for a pixel at x = (56, 85) in V 12.

Fig. 9. Adaptation of weights in a video that do not contain smoke.

B. Experiments on a UCI Dataset

The proposed method is also tested with a dataset from
the UCI (University of California, Irvine) machine learning
repository to evaluate the performance of the algorithm in
combining different classifiers. In the wildfire detection case,
the image data arrives sequentially and the decision weights
are updated in real-time. On the other hand, the UCI data
sets are fixed. Therefore the dataset is divided into two parts:
training and testing.

During the training phase, weights of different classifiers
are determined using the EADF update method. In the testing
phase, the fixed weights obtained from the training phase are
used to combine the classifier decisions, which process the
data in a sequential manner because both the NLMS and
the EADF frameworks assume that the new data arrive in a
sequential manner.

The test is performed on the ionosphere data from the UCI
machine learning repository that consists of radar measure-
ments to detect the existence of free electrons that form a
structure in the atmosphere. The electrons that show some
kind of structure in the ionosphere return “Good” responses;
the others return “Bad” responses. There are 351 samples with
34-element feature vectors that are obtained by passing the
radar signals through an autocorrelation function. In [60], the
first 200 samples are used as the training set to classify the
remaining 151 test samples. They obtained 90.7% accuracy
with a linear perceptron, 92% accuracy with a non-linear
perceptron, and 96% accuracy with a back propagation neural
network.
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For this test, SVM, k-nn (k-Nearest Neighbor) and NCC
(normalized cross-correlation) classifiers are used. Also, in this
classification the decision functions of these classifiers produce
binary values with 1 corresponding to “Good” classification
and -1 corresponding to “Bad” classification rather than scaled
posterior probabilities in the range [−1, 1].

The accuracies of the sub-algorithms and EADF are shown
in Table VI. The success rates of the proposed EADF and
NLMS methods are both 98.01% which is higher than all the
sub-algorithms. Both the entropic projection and orthogonal
projection based algorithms converge to a solution in the
intersection of the convex sets. It turns out that they both
converge to the same solution in this particular case. This is
possible when the intersection set of convex sets is small. The
proposed EADF method is actually developed for real-time
application in which data arrives sequentially. This example is
included to show that the EADF scheme can also be used in
other datasets. It may be possible to get better classification
results with other classifiers in this fixed UCI dataset.

TABLE VI
ACCURACIES OF SUB-ALGORITHMS AND EADF ON IONOSPHERE

DATASET.

Data Success Rates (%)
SVM k-nn (k=4) NCC NLMS EADF

Train 100.0 91.50 100.0 100.0 100.0
Test 94.03 97.35 91.39 98.01 98.01

VI. CONCLUSION

An entropy functional based online adaptive decision fusion
(EADF) is proposed for image analysis and computer vision
applications with drifting concepts. In this framework, it
is assumed that the main algorithm for a specific applica-
tion is composed of several sub-algorithms each of which
yields its own decision as a real number centered around
zero, representing its confidence level. Decision values are
linearly combined with weights which are updated online
by performing non-orthogonal e-projections onto convex sets
describing sub-algorithms. This general framework is applied
to a real computer vision problem of wildfire detection. The
proposed adaptive decision fusion strategy takes into account
the feedback from guards of forest watch towers. Experimental
results show that the learning duration is decreased with the
proposed online adaptive fusion scheme. It is also observed
that error rate of the proposed method is the lowest in our
data set, compared to the universal linear predictor (ULP) and
the normalized least mean square (NLMS) based schemes.

The proposed framework for decision fusion is suitable for
problems with concept drift. At each stage of the algorithm,
the method tracks the changes in the nature of the problem by
performing an non-orthogonal e-projection onto a hyperplane
describing the decision of the oracle.
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