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Abstract. In this paper, we extend the recently introduced concept of
fractional wavelet transform to obtain directional subbands of an image.
Fractional wavelet decomposition is based on two-channel unbalanced
lifting structures whereby it is possible to decompose a given discrete-
time signal x[n] sampled with period T into two sub-signals x1[n] and
x2[n] whose average sampling periods are pT and qT , respectively. Frac-
tions p and q are rational numbers satisfying the condition: 1/p+1/q = 1.
Filters used in the lifting structure are designed using the Lagrange inter-
polation formula. 2-d separable and non-separable extensions of the pro-
posed fractional wavelet transform are developed. Using a non-separable
unbalanced lifting structure, directional subimages for five different di-
rections are obtained.
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1 Introduction

Lifting structures provide computationally efficient implementation of the wavelet
transform [1–7] and they found applications in image and video coding and signal
and image analysis applications [8, 9].

New unbalanced wavelet lifting structures producing directional decomposi-
tion of the input image are introduced in this article. In standard lifting struc-
tures the input signal is first decomposed into even and odd indexed samples
using the lazy wavelet transform. In the recently proposed unbalanced lifting
structure, a structure similar to the lazy filterbank forwards every pth sample
of the original signal to the upper-branch and remaining p− 1 samples out of p
samples go to the lower branch [10]. Discrete-time update and prediction filters
interconnect the upper and lower branches, respectively. Discrete-time filters op-
erating in the lower sampling rates are designed using the Lagrange interpolation
formula which is also used in many filterbank designs including our filterbanks,
Smith-Barnwell and Daubechies filterbanks. In this way, two sub-signals with
different sampling rates are obtained from the original signal. When the input
signal has a sampling rate of T the upper- and lower- branches of the unbal-
anced lifting filterbank have sampling rates of pT and Tp/(p− 1), respectively.
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In standard balanced lifting the sampling periods of upper and lower branches
are the same: 2T .

The unbalanced lifting decomposition can be easily generalized to other sam-
pling strategies in which the upper-branch has a sampling rate of pT and the
lower-branch has a sampling rate of qT with the property that

1

p
+

1

q
= 1 (1)

Perfect reconstruction can be easily achieved by changing the signs of the filters
in the reconstruction part of the ordinary balanced lifting structures.

In Section 2, an example filterbank design with p = 3 : 1 and q = 3 : 2 is
presented. In Section 3, 2-D separable filterbank design examples are presented.
Non-separable 2-D extension of the unbalanced lifting structure resulting in di-
rectional subbands is developed in Section 4.

2 Unbalanced Lazy Filterbank and Lifting Structures

An unbalanced lazy filterbank for p = 3 : 1 and q = 3 : 2 is shown in Figure 2.
In the upper-branch a regular downsampling block by a factor of three is used.
In the lower-branch the downsampling block for q = 3 : 2 is used. In Figure 2,
the signal x[n] is fed to the lazy filterbank and outputs of downsampling blocks
are shown. Every 3rd sample of the original signal goes to the upper-branch and
remaining samples appear in the lower branch.

We describe the update and the prediction filter design for the unbalanced
lifting structure in the following subsection.

2.1 Update Filter

In Figure 1 an unbalanced lifting structure is shown with downsampling ratios
3 : 1 and 3 : 2 in the upper and lower branches, respectively. Similar to the regular
balanced lifting filterbank case, the upper branch sample d can be estimated
using the neighboring lower branch samples b, c, e, and f and an estimate of the
sample d is given as follows:

d′ =
b+ 2c+ 2e+ f

6
, (2)

which is the output of the update filter linking the lower branch to the upper
branch. Since samples c and e are closer to the sample d compared to f and b
more weight is given to the samples c and e. The sample d and the output of
the filter is linearly combined and the updated sample is obtained as follows

d̂ =
2d′

3
+

d

3
(3)

Since the downsampling is by a factor of three in the upper-branch original signal
must be filtered with a low-pass filter with a cut-off frequency of π/3. We could
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Fig. 1. Unbalanced lifting scheme with p = 3 : 1 and q = 3 : 2 downsampling ratios.

have used d̂ = d′

2 + d
2 but this does not produce as good frequency response as

(3). Therefore, the upper branch output sample is given by

d̂ =
2b

18
+

4c

18
+

6d

18
+

4e

18
+

2f

18
(4)

The corresponding filter coefficients are given as follows

hl[n] = { 2

18
,
4

18
,
6

18
,
4

18
,
2

18
} (5)

The frequency response of this filter is plotted in [10]. The cut-off frequency
of this filter is π/3.

Other samples of the upper branch of the filterbank are smoothed in a similar
manner. In Equation (5), each sample of the upper branch sub-signal is updated
using four neighboring samples of the lower branch. It is possible to smooth
the samples of the upper branch further by using more samples from the lower
branch without effecting the perfect reconstruction capability of the filterbank.
In this case, Lagrange interpolation formula or other interpolation methods can
be used to determine the update filter coefficients. In general,

xL[n] =
1

9
x[3n− 2] +

2

9
x[3n− 1] +

3

9
x[3n] +

2

9
x[3n+ 1] +

1

9
x[3n+ 2] (6)

where x[n] is the original input signal to the filterbank.

2.2 Prediction Filter

Samples of the lower branch are estimated from the upper branch and difference
is transmitted to the receiver. Lower branch samples can be predicted from the
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upper branch using the updated samples â, d̂, ĝ, ... (see Figure 1). The prediction
filter can be as simple as the identity operator selecting the nearest upper branch
sample as an estimate of the lower branch sample:

xH [0] = b− â, xH [1] = c− d̂, ... (7)

where the subscript H indicates that xH [n] is a high-band sub-signal. Other
samples of xH [n] can be determined in a similar manner. Although the above
prediction strategy is very simple and computationally efficient, the above pre-
dictor is not a good estimator. We can use Lagrange interpolation and obtain:

xH [0] = b− (2â+ d̂)/3, xH [1] = c− (2d̂+ â)/3, ... (8)

In general,

xH [n] =

{
x[ 3n+2

2 ]− 2xU [n2 ]+xU [n2 +1]

3 , n is even

x[ 3n+1
2 ]− 2xU [n+1

2 ]+xU [n−1
2 ]

3 , n is odd
(9)

where x[n] is the original input signal to the filterbank.
To determine xH [0] the sample b is estimated using the two nearest upper

branch samples â and d̂. Let P (t) be the Lagrange interpolator based on the

samples â and d̂:
P (t) = â ℓo(t) + d̂ ℓ1(t) (10)

where ℓi(t) are the Lagrange basis polynomials. The function P (t) is constructed

using the input data pairs (â, 0) and (d̂, 3T ). Since the sample b occurs at t = T ,
ℓo(T ) = 2/3 and ℓ1(T ) = 1/3. Therefore the Lagrange interpolation gives more

weight to the sample â because it is nearer to the sample b compared to d̂ to
determine xH [0] in (8). Similarly, more weight is given to the sample d̂ because it
is nearer to the sample c compared to â to determine xH [1] etc. As it can be seen
from the above equations the predictor is a time varying filter. The predictor can
even be an adaptive LMS-type filter as described in references [4, 11, 12]. The
adaptive prediction tries to remove as much information as possible from the
lower-branch using xH [n] samples. In this case the computational complexity is
higher than the predictors in (7) and (8). Other samples of xL[n] can be also used
by the predictor filter. In this case higher order Lagrange interpolation formula
needs to be used [4, 13].

It is trivial to design the reconstruction filterbank as in regular lifting struc-
tures. At the reconstruction stage signs of filters U and P are changed and
sub-signal samples are realigned to obtain the original signal x[n].

Designing unbalanced lifting structures with different p and q values is also
possible by following the abovementioned design strategy. For instance, an un-
balanced lifting scheme with p = 3 : 2 and q = 3 : 1 can be constructed by
determining the update and prediction filter coefficients according to distances
between samples. It should be noted that low-pass filtered upper-branch signal
is not uniformly sampled in this case. Hence, update and prediction filters are
designed after transforming the upper branch samples to a uniform grid. Then,
update and prediction operations can be carried out in a similar manner.
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3 Extension for Two-Dimensional Signals

In Figure 2, the separable filterbank structure for the unbalanced lifting wavelet
transform with p = 3 : 2 and q = 3 : 1 is given. The input image is first
downsampled in the horizontal direction. Then the update and prediction filters
are applied to the downsampled images. The intermediate output signals xL

and xH are then downsampled in the vertical direction and the update and
prediction filters are applied again. As an example, the image given at Figure
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Fig. 2. Extension of the unbalanced lifting structure with p=3:2 and q=3:1 to 2-D.

3 (left) is fractional wavelet transformed using the scheme presented in Figure
2. The transformed image is given at Figure 3 (right). As another example, the
image given at Figure 4 is wavelet transformed in Figure 1 using the fractional
wavelet transform with p = 3 : 1 and q = 3 : 2 which is a 2-D extended version
of the filterbank described in Section 2.

Fig. 3. Example image (left) and 2-D unbalanced lifting wavelet transformed image
with p=3:2 and q=3:1 (right). Highband subimages are amplified by a factor of five.
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Fig. 4. 2-D unbalanced lifting wavelet transformed image with p=3:1 and q=3:2. High-
band subimages are amplified by a factor of five.

4 2-D Directionally Selective Non-Separable Unbalanced
Filterbank Structure

The 2-D non-separable extension of the unbalanced lifting wavelet transform is
also possible. In Section 3, separable filterbank structure with p = 3 : 2 and
q = 3 : 1 is proposed for two-dimensional signals. In this section, we design a
non-separable lifting structure for 2-D signals with p = 9 : 1 and q = 9 : 8,
where p and q denote spatial sampling rates. Figure 5 shows the non-separable
structure having one upper branch and five lower branches, each corresponding
to a prediction filter designed to reveal image edges in a specific direction.

In Figure 5, the upper branch has a downsampling ratio of 9 : 1 and the
lower branch has a downsampling ratio of 9 : 8. First, a 2-D update filter is used
to smooth the upper branch samples so that a low-resolution image xL[n1, n2]
is obtained. Afterwards, 2-D prediction filters are used to obtain the directional
subbands of the input image in five different directions, which are 0, 26.5, 45,
63.4 and 90 degrees with respect to the horizontal axis.

In Figure 5, pixels of an image are shown. The pixel marked e can be es-
timated from the neighboring lower branch samples a, b, c, d, f, g, h, and i as
follows:

e′ =
a+ c+ g + i+

√
2b+

√
2f +

√
2h+

√
2d

4
√
2 + 4

(11)

The weights of the neighboring samples in estimating the sample e are de-
termined based on their geometric distance to the sample e. The estimate ob-
tained in Equation (11) represents the output of the update filter and is linearly
combined with the upper branch sample e to obtain the updated sample corre-
sponding to e:

ê = w1e
′ + w2e (12)
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Fig. 5. 2-D non-separable extension of the unbalanced lifting structure with p = 9 : 1
and q = 9 : 8.

where w1 and w2 are weights which can be determined as in Section 4 such that
the effective filter is a low-pass filter with cut-off frequency w = π/3 in both
horizontal and vertical directions.

Similar to the unbalanced lifting structure for 1-D signals, the original 2-
D signal must be filtered using a low-pass filter to avoid aliasing. The spatial
downsampling ratio is 9 : 1 in the upper branch, which corresponds to a down-
sampling ratio of 3 : 1 in both horizontal and vertical directions. When w1 = 8/9
and w2 = 1/9, the upper branch output sample is computed as

ê =
2

9(
√
2 + 1)

(a+ c+ g + i) +
2
√
2

9(
√
2 + 1)

(b+ f + h+ d) +
1

9
e (13)

The coefficients of the filter that yields the upper branch samples from the
original signal are given by

hl[n1, n2] =

α β α
β γ β
α β α

 (14)
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where α = 2
9(

√
2+1)

, β = 2
√
2

9(
√
2+1)

, and γ = 1/9.

Frequency response of this symmetric filter is shown in Figure 6.
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Fig. 6. Frequency response of the filter in Equation (14).

In general, the upper branch samples are given by

xL[n1, n2] = γx[3n1 − 2, 3n2 − 2] + α(x[3n1 − 3, 3n2 − 3]+

x[3n1 − 3, 3n2 − 1] + x[3n1 − 1, 3n2 − 3] + x[3n1 − 1, 3n2 − 1])+

β(x[3n1 − 3, 3n2 − 2] + x[3n1 − 1, 3n2 − 2]+ (15)

x[3n1 − 2, 3n2 − 3] + x[3n1 − 2, 3n2 − 1])

where x[n1, n2] is the original input image to the filterbank.
Prediction filters P1, P2, P3, P4, and P5 are designed to find estimates of the

lower branch samples using the closest upper branch samples in five different
directions, which are 0, 26.5, 45, 63.4 and 90 degrees, respectively, with respect
to the horizontal axis. Figure 7 shows the upper branch samples ai,j and lower
branch samples. The samples y1 and y2 are estimated by P1 using the updated
upper branch samples a3,1 and a3,2, and 0 degree high subband of the input
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image is constructed. The sample v is estimated by P2 using the upper branch
samples a3,1 and a2,3, and the differences going into the second lower branch
output channel make up the 26.5 degrees directional subband image. For the
45 degree diagonal subband, the samples w1 and w2 are predicted by using the
upper branch samples a3,1 and a2,2. P4 uses a3,1 and a1,2 samples to obtain the
predictor for the sample u, resulting in 63.4 degrees directional subband image.
Finally, the prediction filter P5 produces estimates of the lower branch samples
z1 and z2 using the upper branch samples a3,1 and a2,1, and the differences be-
tween the actual values and estimates form the 90 degrees directional subimage.
Repeating these computations for each 3x3 subregion of a 2-D signal or an image
as shown in Figure 7, we obtain directional subbands in a non-separable manner.
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Fig. 7. Spatial organization of upper branch and lower branch samples.

To obtain the directional subimages by using the updated upper branch sam-
ples, the weights given to the upper branch samples are determined based on
their geometric distance to the corresponding lower branch sample. Therefore,
the closest neighboring upper branch sample has the weight 2/3 and the other
sample gets the weight 1/3. For instance, for prediction of the sample v, a3,1 is
assigned 2/3 weight and a2,3 is assigned 1/3 weight. Other lower branch samples
can be predicted in a similar manner.

In general, directional subimages are given by the following equations:

xH1 [n1, n2] =

{
x[3n1 − 2, 3n2

2 ]− 2xL[n1,
n2
2 +1]+xL[n1,

n2
2 ]

3 , n2 is even

x[3n1 − 2, 3n2+1
2 ]− 2xL[n1,

n2+1
2 ]+xL[n1,

n2+3
2 ]

3 , n2 is odd
(16)

xH2 [n1, n2] = x[3n1, 3n2]−
2xL[n1 + 1, n2] + xL[n1, n2 + 2]

3
(17)
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xH3 [n1, n2] =

{
x[3n1,

3n2+1
2 ]− 2xL[n1+1,

n2+1
2 ]+xL[n1,

n2+3
2 ]

3 , n2 is odd

x[3n1 − 1, 3n2

2 ]− 2xL[n1,
n2
2 +1]+xL[n1+1,

n2
2 ]

3 , n2 is even
(18)

xH4 [n1, n2] = x[3n1 − 1, 3n2 − 1]− 2xL[n1 + 1, n2] + xL[n1 − 1, n2 + 1]

3
(19)

xH5 [n1, n2] =

{
x[ 3n1

2 , 3n2 − 2]− 2xL[
n1
2 +1,n2]+xL[

n1
2 ,n2]

3 , n1 is even

x[ 3n1+1
2 , 3n2 − 2]− 2xL[

n1+1
2 ,n2]+xL[

n1+3
2 ,n2]

3 , n1 is odd
(20)

It is also possible to use the four closest neighboring upper branch samples
in the desired direction instead of the two closest samples to estimate the lower
branch sample. Then, the weights of the updated upper branch samples are
assigned accordingly. More robust estimates of the lower branch samples can
be achieved by adopting this prediction strategy. Other possibility is to use the
adaptive filters in [6] and [7] for predicting the lower branch samples.

Figure 8 shows the directionally transformed image using the lifting scheme
presented in Figure 5. Directional subband images reveal directional edges present
in the input image. Non-separable unbalanced lifting structure provides direc-
tional edge information that can not be obtained by employing the separable
filterbank structure. Figure 9 (left) shows another example image and Figure

Fig. 8. 2-D unbalanced directional lifting wavelet transformed image with p = 9:1 and
q = 9:8. Highband subimages are amplified by a factor of five.

9 (right) shows the directional wavelet transformed subimages using the non-
separable unbalanced lifting scheme depicted in Figure 5. As observed from
Figure 9, only the lines orthogonal to the direction in which the desired egdes
are found are not highlighted in directional subband images. For instance, in
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63.4 degree directional subimage, the line that is in approximately 63.4 degree
orientation with respect to the horizontal axis has the same gray value as the
background, which indicates that there is almost no edge on this line in 63.4
degree direction with respect to the horizontal axis. Similarly, it is evident in 45
degree diagonal subband image that almost no directional edges are found on
the line that makes an angle of 45 degree with the horizontal axis.

There are other possible lifting schemes than the one proposed in this paper
for directionally selective fractional wavelet decomposition of images in a non-
separable manner. An alternative scheme is a 2-D non-separable unbalanced lift-
ing structure where the spatial downsampling ratios are taken to be p = 16 : 1
and q = 16 : 15 for upper and lower branches, respectively. In this scheme direc-
tional subband images can be obtained for more than five directions by adding to
the lifting structure several prediction filters tailored to desired directions. In this
way, we have a more sophisticated directional wavelet decomposition with more
detail about different angles while obtaining a lower resolution low-pass filtered
subimage xL[n1, n2]. Another possibility for an unbalanced lifting scheme is to
employ a downsampling and prediction strategy such that directions ranging
from 90 degree to 180 degree are also included in the directional decomposition
of the input image.

Fig. 9. Example image 2 (left) and 2-D unbalanced directional lifting wavelet trans-
formed image with p = 9:1 and q = 9:8 (right). Highband subimages are amplified by
a factor of five.

Conclusion

In this article, directionally selective fractional wavelet transform (FWT) meth-
ods are developed using unbalanced lifting structures. Sub-images have different
average sampling rates.

2-D separable extensions carry out horizontal and vertical processing in dif-
ferent steps of the lifting transform. 2-D non-separable lifting structures provide
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unbalanced directional decomposition of the input image, leading to many differ-
ent directional subbands. Image transformation examples are presented for both
separable and non-separable cases. The FWT method can be easily extended to
higher dimensions.
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