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Abstract

In this paper, we describe a new vector similarity measure asso-

ciated with a convex cost function. Given two vectors, we determine

the surface normals of the convex function at the vectors. The an-

gle between the two surface normals is the similarity measure. Convex

cost function can be the negative entropy function, total variation (TV)

function and filtered variation function. The convex cost function need

not be differentiable everywhere. In general, we need to compute the

gradient of the cost function to compute the surface normals. If the

gradient does not exist at a given vector, it is possible to use the sub-

gradients and the normal producing the smallest angle between the

two vectors is used to compute the similarity measure.

1 Introduction

Inner product of two vectors is the basis of many big data analysis, machine

learning and signal processing algorithms [1]. For example, the cosine sim-

ilarity between two vectors x1 and x2 is computed using the inner product

of the two vectors divided by the `2-norms of the vectors:

cos(x1,x2) =
〈x1,x2〉
‖x1‖‖x2‖

, (1)
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In this article, we want to determine the similarity of two vectors ac-

cording an associated convex cost function f . In Figure 1, the main idea

behind the new cost measure is graphically described. Tangent lines and the

surface normals at x1, f(x1) and x2 and f(x2) are determined. We propose

a similarity measure that can be defined as the cosine similarity between the

surface normals of the two vectors x1 and x2 on the convex cost function f

as follows:

C(x1,x2) = 〈e1, e2〉 (2)

where e1 and e2 are the unit surface normal vectors of the convex cost

function f at x1, and x2, respectively. We call the cosine measure C(x1,x2)

Bregman angle between x1, and x2.

This new measure is inspired by the well-known Bregman divergence [2–

5]. which is based on the surface tangent of the cost function. The Bregman

divergence D(x1,x2) between the two vectors x1 and x2 is the “vertical”

distance between the cost function f and the tangent line at x2 evaluated

at the vector x1:

D(x1,x2) = f(x1)− f(x2)−∇f(x2)
T (x1 − x2) (3)

For example, when f(x) = ‖x‖2 then the Bregman divergence reduces to

Euclidian or the square distance between the two vectors, i.e., D(x1,x2) =

‖x1 − x2‖2.
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Figure 1: The angle between e1 and e2 is the similarity value between the
two vectors x1 and x2.

2 Bregman Angle Similarity Measure

For a convex function f(x) the unit surface normal is defined as:

e =
[∇f(x), − 1]

||[∇f(x), − 1]||
(4)

In the next subsection we use the surface normals of the convex function to

construct vector similarity measures.

2.1 Similarity Measure Based on Surface Normals

The general form of the proposed similarity measure based on surface nor-

mals can be defined as follows:

C(x1,x2) =
〈∇f(x1),∇f(x2)〉+ 1√

〈∇f(x1),∇f(x1)〉+ 1
√
〈∇f(x2),∇f(x2)〉+ 1

(5)
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When the cost function is the well-known negative entropy f(x) =∑
i x(i) log(x(i)) the surface normals are given by:

E1 =

[
∂f(x1)

∂x1(1)
, · · · , ∂f(x1)

∂x1(N)
,−1

]
= [log(x1(1)) + 1, · · · ,−1] (6)

E2 =

[
∂f(x2)

∂x2(1)
, · · · , ∂f(x2)

∂x2(N)
,−1

]
= [log(x2(1)) + 1, · · · ,−1] (7)

and unit normals are:

e1 =
E1

||E1||
(8)

e2 =
E2

||E2||
(9)

The cosine similarity between the vectors is then defined as follows:

C(x1,x2) =

∑
i (log(x1(i)) + 1)(log(x2(i)) + 1) + 1√∑

i (log(x1(i)) + 1)2 + 1
√∑

i (log(x2(i)) + 1)2 + 1
(10)

Since the entropy function is only defined for positive values we can use

the modified entropy functional introduced in [6] to account for non-negative

values:

f(x) =
∑
i

(
|x(i)|+ 1

e

)
log

(
|x(i)|+ 1

e

)
+

1

e
(11)

For this case the Bregman angle measure can be obtained from the fol-

lowing surface normals:

E1 =

[
sign(x1(1))

(
log

(
|x1(1)|+ 1

e

)
+ 1

)
, · · · ,−1

]
(12)

E2 =

[
sign(x2(1))

(
log

(
|x2(1)|+ 1

e

)
+ 1

)
, · · · ,−1

]
(13)
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A well-known convex cost function is the total-variation (TV) function:

TV (x) =

N∑
i

|xi+1 − xi| (14)

For the TV function the surface normal vector SN(TV ) is given by

SN(TV ) =

[
∂TV

∂x1
,
∂TV

∂x2
, . . . ,

∂TV

∂xN
,−1

]
(15)

which is equal to

[(sign(x2 − x1)), (sign(x2 − x1)− sign(x3 − x2)), . . . , (sign(xN − xN−1),−1]

(16)

where sign(.) is the signum function. We can easily construct a vector sim-

ilarity measure from the above vector. It turns out that we get the best

experimental results using the TV function.

Similarly for f(x) = ‖x‖2 the distance function becomes:

C(x1,x2) =

∑
i 4x1(i)x2(i) + 1√∑

i 4x1(i)2 + 1
√∑

i 4x2(i)2 + 1
(17)

When we remove the last entry from the surface normals the Bregman cosine

similarity becomes the ordinary cosine similarity.

In Figure 2 and 3 some examples are shown to compare the proposed

similarity measure for two extreme cases of sample distributions. When

the samples are defined over a circle the Euclidean distance is same for all

samples but cosine similarity and Bregman angle can distinguish between

samples at different angles according to the center sample. When the sam-

ples are defined on a line usual cosine similarity cannot separate the samples

but proposed Bregman angle measure still works.
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(a) Distribution of samples (b) Distance/Similarity measures

Figure 2: Distance similarity measure for concentric distribution of samples.

(a) Distribution of samples (b) Distance/Similarity measures

Figure 3: Distance similarity measures for linear distribution of samples.

2.2 Similarity Measure Based on Surface Tangents

When surface tangents are used instead of surface normals the similarity

measure reduces to:

Ct(x1,x2) =
〈∇f(x1),∇f(x2)〉√

〈∇f(x1),∇f(x1)〉
√
〈∇f(x2),∇f(x2)〉

(18)

Bregman distance uses surface tangents of the convex cost function.

Therefore we can also use the surface tangents to define another cosine
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similarity measure. Given two vectors x1 and x2, we compute the gradient

vectors t1 and t2 of the cost function f at x1 and x2 and the angle between

t1 and t2 is the cosine similarity measure.

For the negative entropy function the vector similarity measure becomes:

Ct(x1,x2) =

∑
i (log(x1(i)) + 1)(log(x2(i)) + 1)√∑

i (log(x1(i)))2 + 1
√∑

i (log(x2(i)) + 1)2
(19)

This is similar to the Eq. (8) but the dimension of the inner product is

smaller than Eq. (8).

When the cost function is the Euclidean distance function Ct becomes

the same as the ordinary cosine similarity vector.

3 Experimental Results

In the first experiment we compare the performance of the Bregman angle

measure with cosine similarity measure on a gesture phase segmentation

dataset. The gesture phase segmentation data set [7] was made available by

UC Irvine Machine Learning Repository. The data set contains 5 classes and

1747 gesture phase data each having 18 attributes. In this paper, simulations

are carried out using the first two classes which contain total of 202 instances.

First, input vectors are multiplied by 107 in order to improve classifica-

tion performance of similarity measures. In all simulation studies, we have

a leave-one-out strategy. The size of the test set is one and the training set

contains the remaining data. The test set is circulated to cover all instances.

2 class 1-nearest neighbor classification is performed using the new similar-

ity measure ((10)) and cosine similarity measures. Classification accuracies

is given in Table 1.
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In this data set the tangential similarity function described in ((19)) pro-

duces slightly lower results than the surface normal based similarity measure.

Table 1: Classification accuracies (Percentage) for the 2 class 1-nearest
neighbor classification with 2 different similarity measures. The last row
is the ordinary cosine similarity measure.

Similarity/Distance Measure Classification Accuracy

Bregman Angle (negative entropy) % 97.5

Bregman Angle (TV) % 99.0

Cosine Similarity % 98.0

As shown in Table 1, classification accuracy of our new similarity mea-

sure ((10)) is almost the same as classification accuracy of the cosine sim-

ilarity measure. The TV function based similarity measure produces the

best results in this dataset.

In the second experiment we used the KTH-TIPS database that contains

800 images for 10 different classes of colored textures [8]. We use half of the

images for each class as the training set and the rest as the test set. We use

1-neighbour knn classifier and four diffierent distance/similarity measures.

To extract features from the images we used the dual-tree complex wavelet

transform (DT-CWT) as texture features and histograms in HSV color space

as color features. Dual-tree complex wavelet transform tree, is recently

developed to overcome the shortcomings of conventional wavelet transform,

such as shift variance and poor directional selectivity [9]. To obtain wavelet

features we divide images into four non-overlapping blocks and calculate

the energies and variances of six different subbands (oriented at +/-15, +/-

45, +/- 75) for each block. The combined feature vectors of all blocks are

used as the texture feature of the image. The results for this test are in

shown Table 2. From the results we see that proposed measure have similar
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performance to Euclidean and cosine similarity measures.

Table 2: Classification accuracies (Percentage) for KTH-TIPS dataset.

Similarity/Distance Measure Classification Accuracy

Euclidean Distance (381/400) % 95.25

Cosine Similarity (380/400) % 95.0

Bregman Angle (Entropy) (379/400) % 94.75

Bregman Angle (l2-norm) (380/400) % 95.0

4 Conclusion

In this paper, we introduced new vector similarity measures based on a con-

vex cost function. The angle between the two surface normals or surface

tangents are used to construct the similarity measures. When the cost func-

tion is the ordinary Euclidean function the surface tangent based similarity

measure reduces to the ordinary cosine measure. It is experimentally ob-

served that TV function based vector similarity measure produces the best

results in a dataset containing human gesture data.
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