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Abstract—Spectrum sensing is one of the most important
features of cognitive radio (CR) systems. Even though spectrum
sensing can be performed by a single CR, it is shown in
the literature that cooperative techniques including multiple
CRs/sensors improve performance and reliability of spectrum
sensing. Existing cooperation techniques usually assume a static
communication scenario between the unknown source and sen-
sors along with a fixed propagation environment class. In this
study, an online adaptive cooperation scheme is proposed for
spectrum sensing in order to maintain the level of sensing
reliability and performance under changing channel and envi-
ronmental conditions. Each cooperating sensor analyzes second-
order statistics of the received signal which undergoes both
correlated fast– and slow–fading. Autocorrelation estimation data
from sensors are fused together by an adaptive weighted linear
combination at the fusion center. Weight update operation is
performed online through the use of orthogonal projections onto
convex sets (POCS). Numerical results show that the performance
of the proposed scheme is maintained for dynamically changing
characteristics of the channel between an unknown source and
sensors, even under different physical propagation environments.
Also it is shown that the proposed cooperative scheme which is
based on second–order detectors yields better results compared to
the same fusion mechanism that is based on conventional energy
detectors.

Index Terms—adaptive data fusion, online learning, fast fading,
mobility, shadowing, spectrum sensing, POCS

I. INTRODUCTION

Cognitive radio (CR) systems, which are aware of their
surroundings and have the capability of self-adaptation to
dynamic environmental and channel conditions, have emerged
as a novel paradigm in wireless communications [1]. One of
the most distinguished features of these systems is spectrum
sensing for dynamic spectrum access. Dynamic spectrum
access consists mainly of the following steps: (i) observing a
specific portion of the radio frequency (RF) spectrum steadily,
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(ii) deciding whether the portion of interest is occupied or not,
and (iii) exploiting the opportunities in such a way that no
harm is done to primary users. From the perspective of both
(ii) and (iii), it can be said that agility and accuracy are the two
prominent requirements for CRs in spectrum sensing, since
CRs need to be accurate in their decisions about whether there
is a spectrum opportunity. Furthermore, once an opportunity
(or a licensed user) emerges they need to be very agile to take
appropriate actions (e.g., exploiting a white hole or vacating
the band due to an emerging primary user) in a timely manner.

Accuracy in spectrum sensing is generally inversely pro-
portional to the complexity of CR systems. However, an
increase in complexity implies a decrease in agility, which
constitutes a critical design trade–off [2, 3]. Therefore, most
of the times it is difficult to attain both the utmost agility and
high accuracy in receiver design simultaneously. Especially
in spectrum sensing, such trade–offs lead to various methods
described in the literature which range from those which give
priority to agility to those which give priority to accuracy.
As will be discussed subsequently, all of these methods are
somehow related to the amount of knowledge in hand before
spectrum sensing operations take place.

Spectrum sensing can generally be considered under the
absence or presence of a priori knowledge of the signal to be
detected. In case there is no knowledge about the signal, it
is shown that the optimal detector is “energy detector,” which
is a non–coherent receiver measuring solely the energy of the
received signal over a specific period of time for a specific
band [4]. The energy detector has very critical drawbacks
such as being prone to uncertainties in noise variance [5],
exhibiting degraded performance for low signal–to–noise ratio
(SNR) values [6], and performing unsatisfactorily, especially
in detecting spread spectrum signals [7]. As opposed to no–
knowledge case, when the signal itself is completely known,
the optimal detection in a stationary Gaussian noise is a
matched filter (with a threshold comparison) [8]. Note that
having a complete knowledge of a signal includes a very long
and detailed set of parameters some of which are signaling
bandwidth, operating frequency, modulation type and order,
pulse shape, frame/burst format and so on. As can be seen
from this list, the optimal solution under certain assumptions
comes at the expense of obtaining a very broad knowledge
of the signal. It is obvious that such a broad knowledge
might not always be available. Instead of having a complete
knowledge, partial knowledge of the signal might be available,
such as the signal to be detected being digitally modulated
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with a certain (known) symbol rate. In such scenarios, more
complex architectures, which still include matched filters, can
safely be used in an optimal sense [9]. Another approach
in partial knowledge scenarios is known as “waveform–
based sensing.” In waveform–based sensing, a set of known
characteristics of the signal whose absence/presence is to
be detected is searched across the received signal with the
use of specially constructed templates [6, 10]. The main
drawback of waveform–based sensing methods is that they
still need to rely on the knowledge of some distinct charac-
teristics of the transmitted signal even though the knowledge
is partial. Slightly different from waveform–based sensing
approach, cyclostationarity–based methods strive to exploit
the inherent periodicity in the statistics of a signal such as
its autocorrelation [11, 12]. This way, instead of focusing
directly on the knowledge of the signal itself, an indirect
approach is adopted by investigating its inherent statistical
features. Especially under the “signal interception” umbrella,
more comprehensive and unifying studies based on several
inherent statistical characteristics of very broad classes of
signals can also be found in the literature [13]. Despite the
fact that it is a very powerful method, cyclostationarity–based
methods might be relatively more computationally complex.
Similar to cyclostationarity–based methods, correlation–based
approaches can also be applied to spectrum sensing problems
[14–16]. However, spatial correlation of shadowing needs
to be taken into account, since it changes the statistical
characteristics of signals and affects the performance [16].
Apart from these, there are also some studies that consider
multi–level sensing. For instance, in radio identification based
sensing, some approaches extract features of the signal first
and then these features are fed to another level to identify
the absence/presence of a primary user. Another approach in
multi–level sensing is to take into account both local and
global decisions along with some sort of decision rule. For
a very comprehensive list of studies including various other
methods on spectrum sensing available in the literature, the
readers might refer to [17–22, and references therein].

Up until this point, spectrum sensing methods are reviewed
from the perspective of a single CR or sensor.1 However,
there are scenarios in which multiple sensors might be used
in spectrum sensing. When multiple sensors are involved in
spectrum sensing, several concerns arise: (C.i) First of all,
many sensors imply many input data; therefore, a decision/data
fusion is essential in order to come up with a single decision on
the absence/presence of an unknown source. Decision fusion
forces one to contemplate a fusion architecture. (C.ii) Second,
once a plausible architecture is proposed, a mechanism needs
to be established so that the deficiency in observations of
each individual sensor stemming from receiver uncertainty,
fading, and shadowing will be overcome. Hence, cooperative
spectrum sensing schemes are proposed by taking into account
both (C.i) and (C.ii) to improve the sensing performance
through the use of spatial diversity [19, 23–26]. Even though
there is vast and ever-increasing studies in the literature on
cooperative spectrum sensing [19, 26, and references therein],

1From this point on the terms “CR” and “sensor” are used interchangeably.

most of the existing methods are developed based on a static
communication scenario between the unknown source and the
sensors along with fixed RF propagation environment classes
and characteristics. However, it would be too optimistic to
state that these cooperative techniques, with their non-adaptive
nature, can survive in practice under dynamically shifting
channel and environmental conditions.

Online learning approaches are powerful tools for problems
where drifts in concepts take place. It is important to observe
that many CR problems accommodate dynamic characteristics
in many aspects. These dynamic characteristics cause drifts
in paradigms. For instance, mobility not only causes corre-
lated fast–fading, but also leads to changes in propagation
environment class or characteristics such as moving from
urban to suburban area. Since such drastic changes need
to be taken into account in spectrum sensing, an online
learning approach seems very promising especially from the
perspective of practical CR systems. Therefore, in this study,
an adaptive data fusion (ADF) scheme, which exploits inherent
dynamics of the sensing problem by adapting the weight of the
contribution from each spectrum sensor in an online manner,
is proposed for cooperative spectrum sensing. Each sensor
carries out a set of operations based on second–order sta-
tistical characteristics of the received unknown signal, which
is assumed to be emitted by a mobile source. Considering
the fact that shadowing process changes slowly compared to
fast–fading process, detectors aim to separate the statistics of
these processes from the received signal by employing a low–
pass filter followed by a logarithmic detector and investigating
the second–order statistics of the output. Then, the output
value of each sensor is sent to the fusion center for their
corresponding weights to be updated online based on the ADF
scheme through the use of orthogonal projections onto convex
sets (POCS). In this regard, the contributions of this study can
be summarized as follows: (C.I) All of the main propagation
mechanisms in the physical layer such as correlated fast–
and slow–fading are taken into account in each spectrum
sensor; (C.II) a second–order detector is employed in sensors
which can decide individually on the absence/presence of the
unknown signal; (C.III) an adaptive cooperation scheme is
proposed to maintain the reliability of the spectrum sensing
system online by tracking the dynamics in the channel and the
propagation environment via the output of the second–order
detectors. Note that, the general framework of a POCS based
online adaptive decision fusion scheme was introduced in
[27] for a machine vision application. This general framework
was then applied for a cooperative spectrum sensing problem
where each sensor utilizes an energy-based spectrum sensing
approach in [28, 29]. Different from the previous studies,
in this paper, the fusion mechanism exploits bounded input
generated by second-order detectors.

The organization of the paper is as follows. The system
model and the statement of the problem are presented in
Section II. In Section III, the proposed online adaptation
and data fusion method is described. Numerical results and
discussions are presented in Section IV. Finally, conclusions
are drawn in the last section.



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

II. SYSTEM MODEL AND STATEMENT OF THE PROBLEM

Let a fixed, immobile spectrum sensor network be composed
of M sensors, possibly situated at M geographically different
locations. Each sensor, say Sensori, where i = 1, . . . ,M ,
carries out a sequence of operations upon receiving a signal
ri(·) coming from a single unknown radio source. Next, each
sensor yields an output value V

(i)
U [n] at a discrete time index,

say n, and sends it over a broadcast channel to a fusion center.
In the final step, fusion center takes all discrete input collected
over broadcast channel, say {yi[n]}, and combines them in
such a way that at the end a binary decision is performed
based on a threshold under certain conditions such as a fixed
probability of false alarm. It is worth mentioning here that
spectrum assignment is assumed to be already established
before the system runs and maintained throughout the entire
period of operation. Broadcast fusion channel is assumed to
function of simplex mode, which solely conveys sensor output
to the fusion center. In case a new spectrum assignment is
required, then the new assignment information is assumed to
be dispatched to the sensors through the use of a reserved
control channel. An outline of the system model described
here is depicted in Figure 1.

In light of the system model given above, the problem can
be stated as follows: identifying the absence/presence of an
unknown narrow band radio source by analyzing it with M
different, independent, and individual sensors and then coming
up with a binary decision on the absence/presence of the
unknown source by fusing output of the broadcast channel
carrying sensor output values under a specific probability of
false alarm value.

Stemming from the fact that the system model considered
in this study functions in multiple steps as discussed above,
it is useful to contemplate each step individually. However, in
order to formalize the overall behavior of the system model,
let the following be given in regards to input and output of
the entire system considered in here:

ri(t) =

{
ni(t), H0,

xi(t) + ni(t), H1,
(1)

where xi(t) is the output of the channel (including slow- and
fast-fading) between the unknown source and Sensori; ni(t)
is the ambient noise at the antenna of the Sensori. In (1), H0

corresponds to the case where the unknown source is absent,
whereas H1 corresponds to the case where the unknown
source is present. It is important to keep in mind that the
absence/presence of the unknown source is universal for each
and every Sensori since the system model described above
assumes that there is a single unknown radio source. However,
the system model given above is not limited to identifying the
absence/presence of a single unknown source. In order to see
this one can imagine that there is more than one unknown
active source. It is clear that there is no difference between
a single active unknown source and multiple active unknown
sources since there is at least one unknown activity in either
case. On the contrary, the absence of unknown source requires
that there is absolutely no active unknown source. Since the
difference between absence and presence of unknown source

is solely a single active unknown source, this study focuses
on a single unknown source scenario.

A. Channel Characteristics Between Sensors and The Un-
known Source

By adopting complex baseband representation, for each
Sensori, noise process ni(t) is assumed to be of complex
additive white Gaussian noise (AWGN) form with CN

(
0, σ2

N

)
as ni(t) = nI

i (t) + jnQ
i (t) where both nI

i (t) and nQ
i (t) are

N
(
0, σ2

N/2
)

and j =
√
−1. On the other hand, {xi(t)} are

assumed to be narrowband signals where the delay spread of
each channel (the channel between the unknown source and
Sensori) is relatively small compared to the inverse bandwidth
of the channel of interest. Therefore, under the narrowband
assumption for Sensori, the unknown signal xi(t) can be
modeled by decomposing it into the following form:

xi(t) = mi(t)si(t)a(t), (2)

where mi(t) = hi(t)e
jθi(t) represents the complex fading

channel process whose amplitude and phase are denoted with
hi(t) and θi(t), respectively; si(t) denotes the real–valued
slow–fading process including the combined effects of both
distance–dependent path loss and shadowing; and a(t) is the
unknown baseband signal. In addition, all three processes in
(2) are assumed to be independent of each other and of the
noise process ni(t).

Note that for the sake of notational convenience, the index i

representing i–th sensor will be dropped and all analyses will
hereafter be carried out for a single, generic sensor, unless
otherwise stated.

Complex fading channel process m(t) is composed of mul-
tiple rays (sometimes referred to as paths) arriving at the re-
ceiver antenna and causes rapid fluctuations in the power level
of the received signal with respect to very small displacements
on the order of a couple of wavelengths of the transmission.
Complex fading channel process is mainly characterized by
the distribution of its fading amplitude h(t) = |m(t)|. In
the literature, some of the frequently used fading amplitude
distributions are Rayleigh, Rice, and Nakagami–m distribu-
tions. Beside amplitude distribution, Doppler spectrum of the
fading channel process is also important in characterizing
the complex fading process [30]. Two of the frequently used
models in the literature for Doppler spectrum are Jakes’ and
Gaussian Doppler spectrum.

It is known that both path loss and shadowing change more
slowly compared to the fast fading process m(t). Therefore,
there is no harm in modeling both path loss and shadowing
with a single process as follows [31, 32]:

s(t) = exp

(
1

2
µ(t) +

σG

2
g(t)

)
, (3)

where µ(t)/2 denotes mean, σG/2 is the standard deviation of
log–normal shadowing, and g(t) is a real–valued unit normal
process N (0, 1). Moreover, the experimental studies present in
the literature for shadowing process g(t) show that shadowing
correlation can be approximated by the following model [33]:

Rg(τ) = E {g(t)g(t+ τ)} = exp

(
−v |τ |

dρ

)
(4)
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Note also that there are some other studies in the literature
related to shadowing models, such as static and dynamic
shadowing [34]. Yet, the model defined by both (3) and
(4) are adopted due to the following two reasons: (R.1) It
is clear that due to the mathematical tractability of both (3)
and (4), the analysis will be simpler. Furthermore, such a
sharp (exponential) decay yields pessimistic results in terms
of shadowing correlation, which provide some sort of upper
bound for the problem considered. Having said this, as will
be shown subsequently, it is important to mention that the
proposed method is independent of any sort of shadowing
correlation model.

Finally, without loss of generality, it is assumed that dis-
placement of the unknown source within the duration of
operation is negligibly small compared to the distance between
the unknown signal source and the sensors. Therefore, the
impact of µ(t) can be neglected so that s(t) is assumed to
solely include the impact of the shadowing process.

B. Channel Characteristics Between Fusion Center and Sen-
sors

The channel between the fusion center and the sensors is
called “broadcast fusion channel.” As opposed to the channel
between sensors and an unknown source, the broadcast fusion
channel is considered to be of discrete form for the sake of
notational convenience. However, this assumption does not
affect the essence of the method proposed at the fusion center.

Since both sensors and the fusion center (and even the
objects in between) are assumed to be immobile, one can
assume that the broadcast channel gains do not change in
time. Because there is ambient noise at the fusion center, the
broadcast fusion channel can be considered to be an AWGN
channel. Note that such conditions are valid for transmissions
through a guided media, such as a direct cable connection be-
tween the fusion center and the sensors. Also, fixed scenarios
such as rooftop–to–rooftop communications with the presence
of a very strong line–of–sight (LOS) can be considered to
be AWGN channel [35, 36]. Such scenarios are nothing but
special versions of a more generalized scheme where there is a
stationary transmitter and a fixed receiver that is equipped with
an antenna of high directivity. In such generalized schemes,
the channel between the transmitter and the receiver falls into
AWGN channel category because directivity of the receiver
antenna can be adjusted in such a way that either direction
of the strong LOS or the strongest path is aimed at [37, 38].
Furthermore, it is known that under fairly general conditions,
fading channels can be transformed into AWGN form by in-
creasing the number of diversity branches [39]. In this regard,
the set of signals reaches the fusion center at n–th discrete
time instant can be modeled as a Gaussian channel with zero–
mean noise qi and with variance δ = [δ21 , δ

2
2 , . . . , δ

2
M ]T for the

sake of an easier analysis:

y = VU + q (5)

with y = [y1 [n] , . . . , yM [n]]
T
, VU =[

V
(1)
U [n], . . . , V

(M)
U [n]

]T
and q = [q1 [n] , . . . , qM [n]]

T

where (·)T denotes the transpose operation.

III. PROPOSED METHOD

In this section, the details of how sensors operate to come
up with their output values, namely V

(i)
U [n], will be discussed.

Following that, the analysis of the fusion center will be
investigated.

A. Sensors

In Section II, it is stated that statistics of the shadowing
and fast–fading processes evolve in different scales on spatial
domain. This implies that the shadowing process is not ex-
pected to vary within relatively short displacements, such as
in a couple of wavelengths of the transmission. Keeping this
in mind, first consider passing the received signal through a
low–pass filter whose (normalized) impulse response is given
by:

w(t) =
1

2TA

(
sgn

(
t+

TA

2

)
− sgn

(
t− TA

2

))
(6)

where sgn(·) is the signum (or sign) function and TA denotes
the effective averaging duration. Now, consider the hypothesis
H1, since it includes both noise and the unknown signal
terms. If r(t) is passed through the low–pass filter under the
hypothesis H1, then, in light of both (2) and (6) and after
some mathematical manipulations [16]:

z(t) = s(t)

t+TA/2∫
t−TA/2

w(t− τ)m(τ)a(τ) dτ

︸ ︷︷ ︸
MF (t)

+NF (t)

= s(t)MF (t) +NF (t).

(7)

is obtained where NF (t) denotes the low–pass filtered white
Gaussian noise (WGN) and TA is assumed to be so short that
shadowing does not change within.2

Next, the natural logarithm operator is applied to the ab-
solute square of z(t) in order to reveal the impact of the
shadowing process, which reads:

ln (Z(t)) = ln
(
s2(t) |MF (t)|2

)
+ ln

(
Z(t)

|s(t)MF (t)|2

)
. (8)

With the aid of both (3) and (8):

ln (Z(t)) = σGg(t) + ln
(
|MF (t)|2

)
+ ln

(
Z(t)

|s(t)MF (t)|2

)
︸ ︷︷ ︸

L(t)

.

(9)
is obtained by neglecting the impact of distance–dependent
path loss.
It is clear that the autocorrelation of (9) will include the shad-
owing correlation via g(t). Therefore, the unbiased estimate
of autocorrelation of (9) is found to be:

Rln (Z)(τ) = σ2
Ge

−v|τ |/dρ +RL(τ)+RgL(τ)+RLg(τ). (10)

2A brief discussion regarding to what extent TA can be considered to be
short is given in Section IV for both practical scenarios and general cases.
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Although the impact of shadowing is clear in (10), it is
difficult to come up with a definitive statement in regards
to the presence of an unknown signal. This mainly stems
from the following two reasons: First, remnants of low–pass
filtering operation cannot be removed completely. Second,
the autocorrelation estimates are biased with the mean of
ln (Z(t)). In addition to these two, one should also keep in
mind that finite support leads to drastic fluctuations in auto-
correlation estimates and renders the entire decision process
difficult. However, as will be shown subsequently, all these
issues can be remedied by investigating the noise–only process
through the steps (7)–(10). In the following parts, (10) will be
discussed further in light of the observations for the noise–only
case. First, the following needs to be given.

Proposition 1. Under the hypothesis H0 along with the ideal
conditions such as T →∞, TA = 0, and unit variance noise,
normalized output of the correlator of any Sensori converges
the constant Φ′ = γ2

γ2+π2/6 where γ is Euler–Mascheroni (or
sometimes referred to solely as Euler’s) constant.

Proof: See Appendix A.
Note that TA = 0 implies no low–pass filtering operation. It

is clear that a low–pass filter applied prior to the logarithmic
detector will not alter the convergent behavior of Φ′. But it
will change the value of Φ′ to a new constant, say Φ′′

TA
. Since

there is no closed form, by relaxing some of the conditions
imposed in Appendix A, Φ′′

TA
can be approximated with

Φ′′
TA

= k2γ2

k2γ2+π2/6 as an extension to (42). Here, k ∈ Z+

denotes the number of samples which are taken 1/fs seconds
apart and fs is the sampling frequency of the receiver.

Since finite support leads to fluctuations around Φ′′
TA

at
larger τ , the autocorrelation estimates in (10) are fed into the
following unbiased estimator prior to the decision step:

VU =
1

U

TA+U∫
TA

Rln (Z)(τ)dτ (11)

where U denotes the effective integration time. It is clear that
when TA = 0+ and U →∞, then VU → Φ′.

Analysis of noise–only case reveals that a drastic drop is
anticipated at the output of the correlator for H0. On the other
hand, for x(t) ̸= 0, even though a drop will still be observed, it
will not be as drastic as that in the noise–only case.3 Therefore,
one can conclude that:

Φ′′
TA

< VU (12)

always holds. Moreover, as shown in Appendix A, Φ′′
TA

implies that no such measurement is required to determine
a specific threshold.

Considering the practical aspects, TA can be selected to be
the lowest non–zero value that is possible at the receiver. This
way, the assumption regarding the invariance of shadowing is
still maintained. On the contrary, U should be chosen as large

3This is very critical because of the reason (R2) stated in Section II.
Considering the fact that the proposed method is independent of any specific
correlation model for shadowing, Φ′′

TA
constitutes the lower bound for the

problem considered here.

as possible to obtain better estimates of VU in (11). Therefore,
one can conclude that U is actually bounded by the memory
(or buffer) capacity of the receiver.

In the sequel, it is critical to emphasize that each and
every sensor is actually able to make a decision on the
absence/presence of an unknown source through the use of
VU as explained in [16]. However, in this study, the scenario
in which decisions are made by individual sensors are not
considered. Therefore, it is assumed that each Sensori sends
the output of its correlator at time instant n, namely V

(i)
U [n],

to the fusion center through the use of a broadcast channel.

B. Fusion Center

Sensors process received signals in accordance with the
second–order statistical method whose details are given in
Section III-A. Here, it is important to recall that the output
of each sensor can be considered to be sent at discrete time
instants. Sensors output are transmitted over a very narrow–
band channel, namely the broadcast fusion channel, to an
immobile “fusion center.” In this regard, based also on the
practical layout scenarios introduced in Section II-B such as
rooftop–to–rooftop (or through the use of a guided media)
communications, the set of signals reaches at the fusion center
at n–th discrete time instant is assumed to be modeled as
expressed in (5). At the fusion center, where the adaptive data
fusion is realized online, a decision is made through the use
of a global test statistic yc [n] that is computed from yi [n] as
follows:

yc [n] RH1

H0
γc [n] (13)

where

yc [n] =
∑M

i=1
yi [n]wi [n]

= yT [n]w [n]
(14)

and

w [n] = [w1 [n] , . . . , wM [n]]
T
, wi [n] ≥ 0 (15)

Weight vector w [n] corresponding to spectrum sensors is
updated in order to maintain the same Pf under dynamically
changing channel and propagation environment characteristics.
Physically, weight vectors are affected by mobility, shadowing
and type of the propagation environment, such as urban or
suburban. Dynamical changes in the environment and channel
directly affects the output of the sensors, VU s, which conse-
quently affect the weights at the fusion center.

Recall from Section III-A that under hypothesis H0, output
of the correlator converges to a constant (VU → Φ′), whereas
it yields always greater values, say Φ+, than the constant Φ′

for the same settings (TA = 0) under the hypothesis H1. As
will also be shown in Section IV, output of correlators under
the hypothesis H1 can be assumed to be constant as well with
the aid of the unbiased estimator given in (11). It is a key
observation that the constant Φ′ is universal for all sorts of
environmental classes such as urban and suburban, whereas
Φ+ changes from one environment to another. Although Φ+

changes depending on the environment, within the decision
process assuming that environmental class does not change,



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

Φ+ is considered to be a constant. Therefore, it is clear that
y in (5) is actually another normal random variable because
both Φ′ and Φ+ are constants. Bearing in mind that the linear
combination of normal random variables yields another normal
random variable (with probably different mean and standard
deviation), the expected value of the weighted combination for
the unit variance noise at the sensor input at any time instant
n, namely yc[n], is given by:

E {yc[n]} =

{
Φ′∥w[n]∥1, if H0

Φ+∥w[n]∥1, if H1

(16)

where Φ′ < Φ+ and ∥·∥1 is the L1–norm since {wi} are
defined to be non–negative in (15). Variance of yc[n] can then
be calculated via (16) as:

E
{
(yc[n]− E {yc[n]})2

}
= wT [n]Covq[n]w[n]

=
M∑
i=1

(wiδi)
2

(17)

for both H0 and H1 where Covq[n] denotes the covariance
matrix of q[n]. The key observation here is that output of sen-
sors are actually constants whose values are dependent on the
hypothesis H0 or H1. According to the system model given in
Section II, this implies that the fusion center combines linearly
output of correlators (i.e., constants) disturbed by AWGN.
Since the noise in broadcast fusion channel is assumed to be of
AWGN form, the linear combination in the fusion center yields
another Gaussian random variable whose mean and variance
are given in (16) and (17). Hence, the performance metric used
for the system model is the following {Pf , Pd} pair due to the
aforementioned Gaussian assumption:

Pf = Q

 γc[n]− Φ′∥w[n]∥1√
wT [n]Covq[n]w[n]

 (18)

and

Pd = Q

 γc[n]− Φ+∥w[n]∥1√
wT[n]Covq[n]w[n]

 (19)

where Pf denotes the probability of false alarm and Pd denotes
the probability of detection, and Q(·) is the complementary
cumulative distribution function, which calculates the tail
probability of a zero mean unit variance Gaussian random
variable.

Here note that different weight selection rules can be
employed for different purposes, such as the one described in
[40, 41]. In this study, although the broadcast fusion channel is
assumed to be of AWGN form, there is no restriction imposed
on the channel (and on the type of propagation environment
such as urban or suburban) between the sensors and the
unknown signal source. Therefore, the system model can easily
be extended to the one in which unknown signal x(t) can be
assumed to undergo shadowing, multipath fading, and Doppler
spread (i.e., a mobile unknown signal source) as well.

As soon as yc[n] is calculated, an estimate of the test
threshold for the corresponding time step n should be calcu-
lated so that an error is obtained and the weights are updated

accordingly. As discussed earlier, at each time step n, γc[n] is
calculated with the aid of both (18) and (19). Hence, the error
value for the corresponding time step is calculated as:

ec[n] = γc[n]− yc[n]. (20)

For a fixed value of probability of false alarm, Pf , one can
obtain the corresponding threshold value, γc[n], from (18) as:

γc[n] = Φ′∥w[n]∥1 +Q−1(Pf )
√
wT[n]Covq[n]w[n] (21)

Along with the weight update equation to be presented, (21)
provides self-adaptation of weights in such a way that statistics
of Pf are not affected by dynamic changes and drifts in the
channel and/or the propagation environment. Considering the
dynamic changes in the physical environment, in order to
have a cooperative spectrum sensing system which maintains
certain performance criteria while avoiding any assumptions
on the physical world such as number of users, type of the
propagation medium, etc., one possible way is to incorporate
a controlled feedback mechanism based on an error term, ec [·]
to the decision making strategy. In the proposed online ADF
framework, this is achieved by keeping the false alarm rate
fixed which in turn implies a constant value for the threshold,
γc[n] in (21). Consequently, at each time step, the error value
is evaluated as in (20) with respect to test threshold. One of the
main advantages of the proposed online cooperative spectrum
sensing strategy is this feedback mechanism, as compared to
other related methods like those discussed in [24]. The weights
of the spectrum sensors yielding correlation estimates different
than (same as) the test threshold are reduced (increased)
iteratively at each time step, making it possible to keep the
performance of sensing unaffected by the change in channel
characteristics. It is worth mentioning at this point that the
proposed algorithm is independent of any specific probability
distribution on the data. Also, as discussed earlier in this
section, different values of Φ+ for different environmental
classes do not affect the analysis, since (21) is independent
of Φ+.

Set Theoretic Weight Update Algorithm: Ideally, the
weighted sum of the received summary statistics of spectrum
sensors should be equal to the test threshold γc[n] at the time
instant n:

γc[n] = yT [n]w[n] (22)

which represents a hyperplane in the M–dimensional space,
w[n] ∈ RM . Hyperplanes are convex in RM . At time instant
n, yT [n]w[n] may not be equal to γc[n]. The next set of
weights are determined by projecting the current weight vector
w[n] onto the hyperplane represented by (22). This process is
geometrically depicted in Figure 2. The orthogonal projection
w [n+ 1] of the vector of weights w [n] ∈ RM onto the
hyperplane γc [n] = yT [n]w[n] is the closest vector on the
hyperplane to the vector w [n].

Let us formulate the problem as a minimization problem:

min
w∗
|w∗ −w [n]| , subject to: yT [n]w∗ = γc [n] (23)

The solution can be obtained by using Lagrange multipliers:

L =
∑

i
(wi [n]− w∗

i )
2
+ λ

(
yT [n]w∗ − γc [n]

)
(24)
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taking partial derivatives with respect to w∗
i :

∂L
∂w∗

i

= 2(wi [n]− w∗
i ) + λyi [n] , i = 1, . . . ,M, (25)

setting the result to zero:

2(wi [n]− w∗
i ) + λyi [n] = 0, i = 1, . . . ,M (26)

and defining the next set of weights as w [n+ 1] = w∗ a set
of M equations is obtained:

w [n+ 1] = w [n] +
λ

2
y [n] (27)

The Lagrange multiplier, λ, can be obtained from the condition
equation:

yT [n]w∗ − γc [n] = 0 (28)

as follows:

λ = 2
γc [n]− yc [n]

||y [n] ||2
= 2

ec [n]

||y [n] ||2
(29)

where the error term is given by (20). Plugging this into (27):

w [n+ 1] = w [n] +
ec [n]

||y [n] ||2
y [n] (30)

is obtained. Hence, the projection vector is calculated accord-
ing to (30).

Whenever a new set of correlator estimates, VU, are gen-
erated by spectrum sensors, another hyperplane based on the
new data values y [n] arrived at the fusion center from the
broadcast fusion channel, is defined in RM :

γc [n+ 1] = yT [n+ 1]w∗ (31)

This hyperplane will probably not be the same as γc [n] =
yT [n]w [n] hyperplane as shown in Figure 2. The next set
of weights, w [n+ 2], are determined by projecting w [n+ 1]
onto the hyperplane in (31). Iterated weights converge at the
intersection of hyperplanes, wc, as stated in [42]. The rate
of convergence can be adjusted by introducing a relaxation
parameter µ to (30) as follows:

w [n+ 1] = w [n] + µ
ec [n]

||y [n] ||2
y [n] (32)

where 0 < µ < 2 should be satisfied to guarantee the
convergence according to the POCS theory [43, 44].

The relaxation parameter has an important role in the
convergence speed of POCS based algorithms as this has
been very well analyzed in the literature under the assumption
of having a wide–sense stationary (WSS) model [45, and
references therein]. However, convergence may take infinitely
long for the case where the hyperplanes in Figure 2 do not
intersect at all. This is true for most of the practical cases and
spectrum sensing is not an exception. In case the intersection
of hyperplanes is an empty set, the updated weight vector
simply satisfies the last hyperplane equation. In other words, it
tracks the test threshold, γc [n], by assigning proper weights to
individual spectrum sensors, in order to maintain the same Pf

value under dynamically changing channel and propagation
environment characteristics. Note that the proposed online
decision fusion method does not need to wait for convergence
to give a decision.

Algorithm 1 The pseudo-code for the Adaptive Data Fusion
(ADF) algorithm

Adaptive Data Fusion[n]
for i = 1 to M do
wi [0] = 1

M , Initialization
end for
γc[n] = Φ′∥w[n]∥1 +Q−1(Pf )

√
wT[n]Covq[n]w[n]

ec [n] = γc [n]− yc [n]
for i = 1 to M do
wi [n+ 1]← wi [n] + µ ec[n]

||y[n]||2 yi [n]
end for
yc [n] =

∑
i wi [n] yi [n]

if yc [n] ≥ γc [n] then
return H1

else
return H0

end if

IV. NUMERICAL RESULTS AND DISCUSSIONS

In simulations, multiple spectrum sensors (M > 1) are
assumed to employ their detectors individually to identify
the presence of the same signal source and then to send
their results to the fusion center as depicted in Figure 1.
The spectrum sensors and fusion center are all assumed to
be fixed, whereas the signal source –when it is actively
transmitting– is assumed to be mobile with an average speed
value of v = 10m/s and to operate on 2GHz within the same
type of propagation environment. The fast–fading channels
between the actively transmitting source and the fixed sen-
sors are assumed to have a Rayleigh distributed amplitude
with a Doppler spectrum that is of Jakes’ type. Spatially
correlated log–normal shadowing is applied to the signal with
σG = {4.3, 7.5}dB and dρ = {5.75, 350}m for urban and
suburban environments, respectively, as reported in [33]. These
two particular environments are selected intentionally because
performance of the proposed method needs to be examined
for physical environments which exhibit drastic differences
in their propagation characteristics. The sampling frequency
of the receiver is assumed to be fixed at 20KHz in order to
satisfy the condition fD ≪ fs. The effective averaging time
of the low–pass integrate–and–dump filter is set to 0.05ms,
whereas the total sensing time is set to 1ms. The impact of
path loss is neglected under hypothesis H1 driven by the fact
that sensors generate their results in a very short period of
time which leads to a very short displacement that the mobile
traverses within that period. In light of this, spectrum sensors
are assumed to observe the same SNR, which is selected to be
3.5dB, reflecting a relatively strong presence when the source
is actively transmitting.

In order to see the beneficial impact of cooperation for
the given settings, Figure 3 should be examined first. It is
clear in the figure that the increase in the number of spectrum
sensors contributing to decision making mechanism improves
the overall system performance drastically, as expected. As
will be shown subsequently, this behavior is maintained by the
proposed method regardless of the type of detector employed
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in sensors or of the propagation environment considered.
The performance of the proposed method when a drift

in concepts takes place, such as a change in propagation
environment from suburban to urban, needs to be investigated
as well. For this purpose, the proposed method is tested for
an urban environment scenario and results are presented in
Figure 3 along with the suburban environment results, for the
sake of comparison. The overall performance of the proposed
method exhibits the same behavior in the urban scenario as
it does in the suburban scenario. However, it is important to
note that the proposed method performs slightly better in the
suburban scenario than in the urban scenario. This stems from
the fact that second–order statistical detectors employed in
sensors can take advantage of the large decorrelation distance
that shapes the shadowing process and therefore performs
better. In this regard, although the suburban environment has
a greater standard deviation, its larger decorrelation distance
dominates and yields better results.

For comparison purposes, the performance of the proposed
method can be examined by replacing each second–order
detector in sensors with the conventional energy detector while
keeping all of the remaining settings intact. Results for such a
scenario are also shown in Figure 3. As can be seen from the
plots, the energy detector–based adaptive fusion mechanism
performs worse compared to the second–order detector–based
adaptive fusion framework. This is because the second–order
detectors are able to extract the correlation information from
the received signal even though it undergoes both fast– and
slow–fading. On the other hand, the energy detector relies
solely on the power statistics which can be severely degraded
by shadowing and deep fast–fading scenarios; therefore, it
yields a weaker performance. Here, it is important to state that
the second–order detector used in sensors can be transformed
into the conventional energy detector by deactivating several
blocks, which can be considered within the software–defined
radio (SDR) concept.

Although it is not required by the online adaptive data fusion
framework, in accordance with the POCS theory, Algorithm 1
is shown to converge by exhibiting a decrease in the average
error values over time in Figure 4. Note in Figure 4 that
the channel conditions between the source and the sensors
are kept the same throughout the convergence period for
illustrative purposes. The average error is evaluated for Pf

values greater than 0.1. The convergence rate can be adjusted
by changing the relaxation parameter µ in (32). It is important
to state that for smaller values of Pf , which correspond to
more demanding cases, the convergence rate will be smaller
accordingly resulting in longer durations to achieve similar
average error values.

As stated earlier, energy detector is a special case of the
second–order detector. Also, theoretically speaking, output
of the energy detector is unbounded, whereas output of the
second–order detector, namely VU , is bounded. This implies
that employing energy detection at sensors will challenge
the decision fusion mechanism and provide a practical upper
bound in terms of (Pf , Pd) pair, as shown in Figure 3.
Furthermore, as can be observed in (5), many critical practical
concerns such as imperfect carrier and phase recovery are

disregarded in the analysis. Hence, the robustness of the
proposed method is tested with a more practical scenario
which includes the physical implementation of the system
model [28, 29]. In [28, 29], the robustness of the proposed
method is tested including the following three aspects: First
of all, real wireless signals are generated and captured over
the air. Second, the fusion center in the experimental setup
is exposed to receiver impairments such as inherent low–pass
filtering, imperfect carrier and phase recovery. Third, based on
the results plotted in Figure 3, energy detector is employed at
the sensors in order to challenge the overall performance of
the method proposed further. Results in [28, 29] show that the
decision fusion mechanism is robust under practical conditions
including the impact of real wireless propagation environment
and receiver impairments. As reported and discussed in [28,
29], correlated input to the ADF scheme has a positive
impact on the performance of cooperative spectrum sensing
by yielding lower error values which in turn results in fast
convergence of weights.

V. CONCLUSION

An online adaptive cooperative spectrum sensing scheme
based on the POCS theory is proposed in order to maintain
the performance and the reliability of sensing under dynam-
ically changing channel and environmental conditions such
as correlated shadowing and fast-fading. Each collaborating
sensor performs a second-order analysis on the received sig-
nal which is assumed to be transmitted by a single mobile
source. The contributions of this study are three–fold. First,
main propagation mechanisms including fast- and slow-fading
phenomena that affect mobile radio channel are incorporated
into spectrum sensing. Second, the received signal by sensors
are processed with second-order detectors which provide the
fusion center with constant output. Finally, an online adaptive
data fusion scheme to be deployed in a cooperative spectrum
sensing framework is introduced.

Results show that the proposed method improves the per-
formance of the second–order detector with the aid of coop-
eration. Also, comparative analysis reveals that the adaptive
fusion mechanism supported by second–order detector output
exhibits superior performance over the conventional energy–
based spectrum detectors.
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APPENDIX
PROOF OF PROPOSITION 1

Proof: Under the hypothesis H0 note that T → ∞ and
TA = 0 imply that there is infinite support with no low–
pass filtering; therefore, in (7), NF (t) immediately degenerates
to n(t). In that case, input to the logarithm operator has a
chi–square distribution with two degrees of freedom (χ2(2)).
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However, since input to the logarithm operator is generated by
the squaring device, one can take advantage of the equality:

ln
(
|n(t)|2

)
= 2 ln (|n(t)|) .

This way, the input–output relationship for the logarithm
operator can be expressed in terms of the Rayleigh distribution,
which provides analytical tractability in the subsequent steps.
Because Y(t) = |n(t)| is Rayleigh distributed, its probability
density function (PDF) is given by:

pY(y) =

{
y
αe

(
− y2

2α

)
, 0 ≤ y

0, y < 0
(33)

where α is the mode parameter of the distribution satisfying
µY = α

√
π
2 with µY being the mean of the PDF of Y(t)

and α =
√

σ2
N/2. Therefore, output of the logarithm, say

X(t), forms a time series that is composed of log-Rayleigh
distributed values:

X(t) = ln (Y(t)) = ln (|n(t)|) , (34)

with the following PDF:

pX(x) =
e2x

α
exp

(
−e2x

2α

)
(35)

for all x ∈ R. Since the output of the correlator is difficult to
express in closed–form when the input is solely noise, let:

r′(t) = lim
A→0

A cos (2πfAt+ ϕA) + n(t), (36)

where A, fA, and ϕA are some arbitrary amplitude, frequency,
and phase values, respectively. Note that (36) is equivalent
to the hypothesis H0 in the limiting sense. If r′(t) follows
through the steps (7)–(10), then output of the correlator is
given by [46]:

Ψ(τ) =
∞∑
i=1

(i + l even)

φk
N (τ)

i∑
l=1

(
(i+ l) /2− 1

(i− l) /2

)
Υm

× 1F
2
1 ((i+ l) /2; l + 1;−Υ) /l!l (i+ l)

+
1

4

∞∑
i=1

1F
2
1 (i; 1;−Υ)φ2k

N (τ)

+

(
ln (A) +

1

2
E1(Υ)

)2

,

(37)

where φN (·) is the normalized autocorrelation estimates of
the quadrature components (i.e., nQ(·)) of n(t), Υ is the SNR
and defined to be Υ , A2/

(
2σ2

N

)
, 1F

2
1 (·; ·; ·) is the confluent

hypergeometric function, and E1(·) is the exponential integral
[47]. Since the purpose is to obtain the characteristics of the
noise–only process, one can consider (37) by expanding E1(·)
into power series for A → 0 (or equivalently for Υ → 0).
This allows one to see that (37) is dominated by the cross–
noise terms as Υ diminishes, and can be expressed after some
manipulations as:

RX(τ) , lim
Υ→0

Ψ(τ) ∼=
1

4

∞∑
i=1

φ2k
N (τ)

i2
+Φ(σN ), (38)

)(1 tr ][)1( nVU
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Fig. 1. Block diagram for the proposed method and for the second–order
detector embedded in spectrum sensors.

where Φ(σN ) represents a constant that depends on the noise
variance σ2

N . Since Φ(σN ) is a constant, one can readily
calculate the variance of X(t) by setting τ = 0 and ignoring
Φ(σN ) as:

σ2
X =

1

4

∞∑
i=1

1

i2
=

π2

24
. (39)

Recalling that X(t) is a non–zero mean process (i.e., µX ̸=
0) due to the non–linear transformation applied Φ(σN ) =
µ2
X holds in (38), since RA(τ) = E {A(t)A∗(t+ τ)} and

RA(0) = σ2
A + µ2

A for any stationary stochastic process A(t)
with µA ̸= 0.

Then by assuming σN to be unity for the sake of simplicity,
µX can be calculated via (33) and (35)–(38) as:

µX = ln (α) +
ln (2)− γ

2

= ln

(
1√
2

)
+

ln (2)− γ

2
= −γ

2
,

(40)

where γ is Euler–Mascheroni (or sometimes referred to solely
as Euler’s) constant and given by γ = −

∫∞
0

ln (u)e−udu.4 In
(38), it is clear that at larger delays (lags) τ , the autocorrelation
estimates exhibit an asymptotic behavior and converge Φ(σN ),
which is a function of noise variance. However, it is desired
that the method proposed is independent of noise variance σ2

N .
Thus, normalizing the autocorrelation estimates with the signal
power (i.e., with the value at τ = 0) will yield the following
constant:5

Φ′ =
Φ(σN )

RX(0)
=

µ2
X

µ2
X + σ2

X

. (41)

Finally, if (40) is placed in (41), the following is obtained:

Φ′ =
γ2

γ2 + π2/6
(42)

which concludes the proof.

4The first five digits of γ in decimal form are γ ∼= 0.57721 . . .
5When σN is unity: Φ′ = γ2

γ2+π2/6
∼= 0.16843 . . . for the first five

significant digits in decimal.
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defined by the test threshold γc [n] and the output of the broadcast fusion
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intersection of hyperplanes, wc, as discussed in [42].
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