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ABSTRACT

A nonlinear predictive model of speech, based on the
method of time delay reconstruction, is presented and
approximated using a fully connected recurrent neural network
(RNN) followed by a linear combiner. This novel combination
of the well established approaches for speech analysis and
synthesis is compared to traditional techniques within a unified
framework to illustrate the advantages of using an RNN.
Extensive simulations are carried out to justify the expectations.
Specifically, the networks’ robustness to the selection of
reconstruction parameters, the embedding time delay and
dimension, is intuitively discussed and experimentally verified.
In all cases, the proposed network was found to be a good
solution for both prediction and synthesis.

1. INTRODUCTION

In the traditional speech prediction, the present speech sample
is approximated as a linear or nonlinear function of a fixed
number of previous consecutive samples. That is, the prediction
of a speech sample at time n is

$s(n) F(s(n 1),s(n 2), ,s(n p))= − − −L (1)

where p is called the prediction order.

In linear predictive (LP) analysis F(⋅) is assumed to be linear.
LP methods are now well understood and very popular because
of their relatively good performance and computational
efficiency [1]. However, their success is limited by the degree
of linearity among speech samples.

In nonlinear predictive (NLP) analysis F(⋅) is assumed to be
nonlinear. Both theoretical and practical advances in the field of
neural networks have activated research on realizing F(⋅) using
a Time-Delay Neural Network (TDNN) [2], a Radial Basis
Function Network (RBFN) [3] and a Recurrent Neural Network
(RNN) [4].

An alternative nonlinear predictive model based on the Takens’
embedding theorem [5] was introduced in [6,7]. Here, speech is
assumed to be the output of a deterministic nonlinear,
autonomous, dynamical system whether it is voiced or
unvoiced. Takens stated that there exists an exact predictive
model given by
$s(n) F(s(n 1),s(n 1), ,s(n 1 (d 1) ))E E E= − − − − − −τ τL   (2)

where τE is the embedding time delay and dE is the embedding
dimension, provided that  dE ≥2d+1; d is the dimension of the
attractor on that the system evolves. Note that (1) is a special
case of (2) with probably suboptimally selected τE=1 and dE=p.
As a result, the dynamical systems approach provides a more
general framework. Here, the problem is the determination of
τE, dE and F(⋅) in some optimal sense. It should be noted that
Takens’ embedding theorem is an existence theorem and tells
nothing about how to find (2).

To the best of our knowledge, in the context of nonlinear speech
processing based on the dynamical systems approach, only MLP
and RBF networks were used for realizing F(⋅) in (2). A
detailed list of related work recently conducted in this field can
be found in [7]. Here, in contrast, we selected a fully connected
RNN followed by a linear combiner [4] motivated by the fact
that a recurrent network introduces an internal (or implicit)
memory of infinite length but of fading nature in addition to the
external memory with a size determined by the embedding.
With more past information relevant to prediction, we expect a
better performance. In addition the implicit network memory is
also expected to make the predictor more robust to the improper
selection of the embedding parameters.

The joint optimization of dE, τE and F(⋅) is a rather difficult
task, if not impossible. In this paper we adopt the following
frame-by-frame analysis approach. Despite the limited size of
the analysis frame (due to stationarity requirements) the time
delay τE is taken as the first minimum of a nonlinear measure of
the time series called the mutual information [8] and the
embedding dimension dE is selected using the correlation
dimension as an estimate for d [9]. After the choice of the
embedding parameters (the optimal choice is still an open
problem) we approximate F(⋅), in the sense of least squares,
using neural networks.

2. APPROXIMATION OF THE
NONLINEAR MAPPING F( ⋅⋅) USING A
RECURRENT NEURAL NETWORK

The recurrent neural network used  to approximate F(⋅) in (2)
consists of three layers; the input layer, the processing layer and
the output layer. The input vector is the concatenation of L
external inputs, a biased input and delayed signals fed back
from the processing layer which consists of N units with bipolar
sigmoid activation function. The output layer has a single unit



which linearly combines the processing layer outputs. If the
network is fully connected, it has a total of N2+(L+1)N
connections from the input layer to the processing layer and N
connections from the processing layer to the output layer. A
RNN predictor with L=2 and N=3 is exhibited in Figure 1. Each
delay unit introduces a delay of τN samples. This form of
predictor has been extensively studied in [10] for both formant
and pitch prediction using the traditional approach. The
external inputs were formed by taking p (typically 8-10)
successive speech samples for formant prediction and  1-3
samples at a distance equal to the pitch period for pitch
prediction. In the context of (2), these predictors are probably
suboptimal and require a larger dimension than that is
suggested by the embedding theory. The following equations
describe the operation of the network:

Y(n)=f(WF Y(n-τN)+Wi R(n)) (3)
$s(n) = W Y(n)o (4)

where Y(n)=[y1(n),y2(n),⋅⋅⋅yN(n)]  is the state vector, R(n)=
[1,s(n-1),s(n-τE-1),⋅⋅⋅,s(n-(dE-1)τE-1) is the augmented input
vector, Wf is the feedback weight matrix, Wi is the input weight
matrix, Wo is the output weight matrix and τN is the network
time delay.

Adaptation of Wf and Wi is performed using the real-time
recurrent learning (RTRL) algorithm [11] and Wo is adapted
using the well known LMS algorithm [12]. At the processing
layer, being hidden, error signals are not available and they are
generated by backpropogating the output error through the
linear combiner.
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Figure 1. Proposed Recurrent Neural Network.
It is clear that for τN=τE,

$ ), , ), )s(n + 1) = F(s(n),s(n - s(n - (d - 1)E E Eτ τL L (5)
Due to the feedback, the memory of the network is infinite but
of fading nature. The authors conjecture that this makes the
network more robust to the slightly false estimations of dE. On
the other hand, this may allow selection of dE smaller than that
required. It is also conjectured that the selection of τN≠τE

increases the robustness of the network to the estimation errors
in τE by providing interleaved samples that are used in
prediction.

3. COMPARISON OF METHODS WITHIN
A UNIFIED FRAMEWORK

3.1 Speech Analysis

For a systematic comparison of the approaches introduced
above we adopt the framework illustrated in Figure 2 for
prediction [13]. The framework consists of two parts; i) The
memory unit, ii) The mapping unit.

Figure 2. A framework for prediction

The success of prediction depends on the following:
(a) the amount of information kept in the memory unit

relevant to prediction
(b) the ability of the mapping unit to realize the actual

relation between the information in the memory and the
predicted value.

Firstly we discuss the amount of past information that can be
considered relevant to prediction in the case of speech signals.
As is well known, in voiced speech prediction we distinguish
between two types of correlations; i) short term correlations and
ii) long term correlations. The former indicates the dependency
of adjacent samples and the latter is a result of the periodicity
in speech signals. The periodicity implies similarity among
samples which are one period apart. Therefore, for a successful
speech prediction the memory unit should span a time interval
of length at least one pitch period.

Secondly we discuss the structure of the memory in all
approaches. For this purpose, we define the memory depth, τD,
as the duration of the signal history (in samples) stored in the
memory unit and the memory resolution, τR, as the reciprocal of
the delay between the signal samples stored in the memory unit.
In the traditional prediction approach (equation (1)) the memory
unit can be considered as a tapped delay line containing the
most recent p speech samples. That is τD=p and τR=1. On the
other hand, in the dynamical systems approach (equation (2))
the memory unit consists of dE samples each separated by τE

samples. Here, τD=dEτE and τR=1/τE . In the  pitch-formant
approach, the memory unit is made of two blocks. The first
block contains the p most recent speech samples each separated
by a unit delay. The second block consists of a few samples
around exactly one pitch period away from the predicted sample
again each separated by a unit delay. As a result the overall
memory depth, τD, is slightly greater than the pitch period and
each block has resolution τR=1.

We conclude that to meet the requirement (a) mentioned above
in the traditional approach (τE=1) we need a relatively large
value of p (or dE) depending on the pitch period of the speech

Memory Unit Mapping Unit
x(n) x(n)^



signal. However, a smaller value of dE is possible in the
dynamical systems approach by using a relatively large τE but at
the expense of a lower resolution. It appears that, for a given
memory depth, the number of samples in the memory unit and
the resolution are two conflicting parameters in the sense that
our aim is to select dE as small as possible (to avoid the curse of
dimensionality), but yet keep the resolution as high as possible
(not to miss samples relevant to prediction). In the traditional
pitch-formant approach, with the use of two different blocks the
resolution is kept high (at least in each block) without
sacrificing too much from dimensionality. Since information
corresponding to the short and long term correlations is
included in the memory unit with a high resolution, that
structure is expected to show the best performance as a
predictor.

Thirdly we demonstrated the validity of our expectations
through some simulations using voiced speech frames taken
from male and female speakers. Speech waveforms were low-
pass filtered at 3.4 kHz cut-off frequency, sampled at 8 kHz and
stored at 16 bits. Each analysis frame consisted of 256 samples.
The results were presented for the memory structures with a
linear mapping unit by plotting the mean value of the prediction
error (MSE) in dB with respect to the memory depth.

Figure 3 shows the results corresponding to a female speaker.
Here, the pitch period of the analysis frame is 24 samples. The
MSE of the pitch-formant approach is shown as a baseline. The
so-called formant memory block consists of the most recent 8
samples and the so-called pitch memory block consists of 3
consecutive samples centered at the pitch period. The other two
plots are for memory resolutions τR=1 and τR=1/3. The poor
performance of the lower resolution and the good performance
of the pitch-formant approach are obvious. However, all
memory structures have comparable performances when all
relevant information is included in the memory as illustrated for
τD > pitch period.

Finally we extend the discussion to the nonlinear mapping unit
and present several experimental results. As mentioned, the
possible networks that can be used are MLP, RBF and RNN.
The first two are feedforward networks. Being static, they do
not contribute to the memory content of the predictor. The
RNN, in contrast, has two implicit effects on the memory
content:

1) the effective memory depth is increased because of the
infinite fading memory (compensates for relatively small dE).

2) the missing samples in the memory are partially
supplied by properly selecting the network delay, τN different
from the embedding delay,τE (compensates for low resolution).
Thus a predictor using an RNN as the mapping unit is expected
to outperform the predictors using MLP and RBF in cases
where;

(i)the memory depth does not cover a full pitch period
(ii)the memory depth covers a pitch period but at a low

resolution.
In other words, for a given performance RNN allows a
relatively small dE with a relatively large τE, provided that
τN≠τE is properly selected. However, in cases where all relevant
information is in the memory unit, we expect all structures to

give similar performances in terms of the prediction error.
However, in case of linear mapping the prediction performance
is expected to be worse when compared to its nonlinear
counterparts.
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Figure 3. Comparison of different memory structures with the
linear mapping unit;female speech.
o: τE=1, x: τE=3, _: pitch-formant memory block (p=8, M=3).

Figure 4 shows the performances of RNN predictor (with a
unity network delay τN=1), MLP predictor and a linear predictor
with respect to the memory depth. Note that all of the predictors
have memory resolution τR=1. In both RNN and MLP networks
the number of neurons was set to 4. In all simulations the
learning rate was set to 0.1 and kept fixed and the networks
were trained for 1000 epochs. The results were averaged over
10 trials. The performance of the RBF network at comparable
complexities was found to be very poor with the learning
algorithm that was implemented. So, the RBF network results
are not shown to avoid overcrowded plots. In Figure 4 the
baseline corresponds to the performance of the pitch-formant
RNN [8] with 8 most recent samples and 3 samples around the
pitch period. Its better performance at relatively lower
complexity (11 input samples) is obvious. Note that the RNN
significantly outperforms the MLP network for very short
memory depths (1-5 input samples). Their performances
becomes comparable as all short term correlated samples are
included in the memory. This remains until the implicit memory
of RNN starts to capture the samples around the pitch period,
though, the external memory depth is still less than the pitch
period. Their performances meet again as the external memory
covers the full pitch period. Again this behaviour is common to
all speech frames.

Nevertheless, because of its infinite memory, the RNN
outperforms the MLP network if it is not stuck at a local
minimum with a relatively bad performance. It is a general
belief that learning algorithms in the RNN explores a more
complex surface. To check the frequency of occurrence of the
above phenomena we run the RNN and the MLP networks over
200 frames of speech taken from 4 speakers. In all simulations
τE was chosen as the first minimum of the mutual information
function and dE was chosen as the smallest integer greater than
the estimated attractor dimension (dE>d+1), even though the
estimates are not expected to be accurate due to small size of



analysis frame. The results are presented in Figure 5. Here, the
solid line represents the boundary where the performances of
the two predictors are equal. Note that the RNN performs better
than the MLP for almost all the frames. So, we conclude that it
is very safe to use the RNN.
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Figure 4. Comparison of RNN vs. MLP (N=4, τE=1, τD<Pitch
Period).
o: RNN, +: MLP, x: Linear, _: Pitch-formant RNN.

Another set of simulations for the male speaker with pitch
period 56 was performed to check the effect of the memory
resolution on the performance. For this purpose, we fixed the
memory depth to a value slightly larger than the pitch period(
τD=60). We changed the embedding delay (equivalently, the
memory resolution) from 1 to 10. Since τD=(dE-1) τE, for each
value of τE we have a different value of dE. Figure 6 illustrates
the performances of linear, MLP and RNN (for both τN=τE and
τN≠τE) predictors. The irregular behaviour of all predictors is
due to the different combinations of samples used for
embedding with varying degrees of relevance to prediction. To
get a better understanding of this phenomena consider the
following cases. When τE=7, the samples used for prediction are
n-1, n-8, n-15, n-22, n-29, n-36, n-43, n-50, n-57. Here, the last
sample (n-57) is exactly one pitch period away from the
predicted sample. When τE=6, the samples used for prediction
are n-1, n-7, n-13, n-19, n-25, n-31, n-37, n-43, n-49, n-55.
Notice that although more samples are used for prediction at a
slightly higher resolution the performance is slightly worse due
to the fact that the sample which is exactly one pitch period
away is not included in the prediction. According to Figure 6,
the variations in the performance of RNN with τN≠τE is smaller
than those of others, indicating the robustness of RNN to the
selection of embedding delay and dimension parameters.
Although we have ysed τN=1 here, the choice of the optimal
network delay for a given embedding is still an open problem.

3.2 Speech Synthesis

In the preceding section, the one step ahead prediction
paradigm is applied to obtain the nonlinearity F(⋅). In this
section, assuming that F(⋅) has captured the underlying
dynamics of the attractor, we use it for speech synthesis. The

synthesizer is operated in an autonomous manner by seeding it
with an all zero state vector and feeding the output to the delay
line which is constructed the same as the memory structure
employed in prediction. Here, the fundamental question is
“Which predictor implementation is the most suitable for
synthesis ?” We claim that the RNN with time delay embedding
appears the most promising since it offers a lower dimension
for the state space. Lower dimensionality helps

a) to avoid curse of dimensionality.
b) to decrease the degree of mismatch in the analysis and

synthesis models.
c) to have a faster convergence to the reconstructed

attractor.
d) to reduce the computational complexity
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Figure 5. Robustness of RNN compared to the other schemes
(N=4)
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Figure 6. Effect of Resolution on the performance of all
structures (N=4)
x: RNN (τE≠τN), *: RNN (τE=τN), +: MLP,
o: Linear, _: pitch-formant RNN.

The mismatch concept in b), reflects the difference among the
samples used for the prediction and synthesis. In the prediction,
the time delay line is fed using samples taken from the original
signal. However, during synthesis the reconstructed samples are
used.



We did several simulations to justify our claims. The first set of
simulations were carried out with clean speech. In the second
set, a noisy speech at 15dB was used. Noisy speech was
generated by adding zero mean Gaussian noise with a variance
accordingly adjusted. The test with noisy speech is aimed to
show which network exhibits good generalization. The
networks used are an RNN with N=4, dE=4, τE=2 and τN=1, and
two MLP networks with N=4, dE=8,12 and τE=1. After the
predictive analysis, the networks were used to synthesize
speech.

Figure 7 shows the noise free waveform together with the
synthesized waveforms.. The following conclusions can be
reached from the results:

(a) The RNN has converged very fast to the attractor that is
very similar to the original.

(b) The MLP network with dE=8 has showed fast
convergence but with an attractor dissimilar to the original
(failed to capture the underlying dynamics)

(c) The MLP network with dE=12 has converged slowly to
an attractor that looks better than the attractor in (b) but still
worse than the attractor in (a).

In addition results obtained in the noisy case has shown us that
the MLP network has captured the specific details contributed
by the noise(overfitting) and hence is not a very general
network structure for synthesis.

The results here clearly illustrate that the RNN with the delay
embedding is an appealing network for future research in
nonlinear speech processing that includes speech analysis,
speech synthesis and even speech enhancement.

4. CONCLUSIONS

In this study, a nonlinear predictive model of speech, based on
the method of time delay reconstruction, has been presented. A
fully connected recurrent neural network followed by a linear
combiner has been proposed to realize the model. Its prediction
performance has been compared to other structures in a unified
framework. These comparisons have shown that the proposed
network offers satisfactory prediction at relatively lower input
dimensions and shows more robust behaviour to the selection of
embedding parameters, namely the embedding time delay and
the embedding dimension, compared to MLP and, equivalently,
to RBF networks. The advantages of a lower input dimension
has been stressed in the context of speech synthesis and
justified via some simulations for both clean and noisy speech.
As a result the proposed approach has been found promising for
applications that might employ nonlinear speech processing.
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Figure 7.  Synthesized speech waveforms.
(a) Original waveform (b) RNN with N=4, dE=4, τE=2, τN=1
(c) MLP with N=4, dE=8, τE=1 (d) MLP with N=4, dE=12


