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ABSTRACT whereTte is the embedding timéelay and dis theembedding
dimension, providedhat ¢ >2d+1; d is the dimension of the
A nonlinear predictive model of speech, based on the attractor on that theystem evolves. Nottat (1) is a special
method of time delay reconstruction, is presented and case of (2) withprobably suboptimally selectag=1 and ¢=p.
approximated using a fully connectegturrent neural network ~ As a result, thedynamical systems approach provides a more
(RNN) followed by alinear combiner. Thisnovel combination general framework. Heréhe problem is the determination of
of the well established approach&s speech analysis and  Te e and F(lin some optimakense. It should be noted that
synthesis is compared to traditional techniques within a unified Takens’ embedding theorem is an existence theoremiedisd
framework to illustrate the advantages of using &NN. nothing about how to find (2).

Extensive simulations are carried out to justify the expectations. _ )
Specifically, the networks’ robustness to the selection of To the best of our knowledge, in the context of nonlinear speech

reconstruction parametershe embedding timedelay and processing based on the dynamical systems approalgylLP
dimension, is intuitively discussed and experimentally verified. and RBF networks were usedr realizing F( in (2). A
In all cases, theroposed network was found to begaod detailed list of relatesvork recently conducted ithis field can
solution for both prediction and synthesis. be found in [7]Here, in contrast, we selectedudly connected
RNN followed by alinear combiner [4] motivated byhe fact

1. INTRODUCTION that a recurrent network introduces an internal (or implicit)

memory of infinite lengttbut offading nature in addition to the
In the traditional speech prediction, the present speech sampleex.ternal memorywnh a size determined b_;h(_a embedding.
is approximated as a linear or nonlindanction of a fixed With morepast information relevant to prediction, we expect a

number of previous consecutive sampldsat is, theprediction betterperformance. In additiothe implicit networkmemory Is
of a speech sample at time n is ' also expected to make the predictor more robust to the improper

~ selection of the embedding parameters.
§(n)= F(s(+ 1),s(® 2) .s(r p) @ ap

where p is called the prediction order. The joint optimization of @ e and F{J is a rather difficult
task, if not impossible. Inhis paper we adopt thillowing

In linear predictive (LP) analysis [f(s assumed to be linear.  frame-by-frame analysis approach. Despite limitedsize of

LP methodsarenow well understood anuery popular because  the analysis frame (due to stationarity requirements) the time

of their relatively good performance and computational —delayte is taken as the first minimum of a nonlinear measure of

efficiency [1]. Howevertheir success is limited bthe degree  the time series called the mutummiformation [8] and the

of linearity among speech samples. embedding dimension edis selected using theorrelation
dimension as an estimater d [9]. After the choice of the

In nonlinear predictive (NLP) analysis JF(s assumed to be  embedding parameters (the optinaoice is still an open

nonlinear. Both theoretical and praCtical adVances in the f|e|d Of prob|em) we approximate E,( in the sense Of |east Squaresl

neural networks have activated research on realizifiguEifhg using neural networks.

a Time-Delay Neural Network (TDNN) [2], a Radial Basis

Function Network (RBFN) [3and a Recurrent Neural Network 2. APPROXIMATION OF THE

RNN) [4].

(RNN)14] NONLINEAR MAPPING F( DIUSING A
An alternative nonlinear predictive model basedhenTakens’ RECURRENT NEURAL NETWORK

embedding theorem [5Yyas introduced in [6,7]. Here, speech is
assumed to be the output of a deterministic nonlinear, The recurrent neural network used to approximafeif((2)

autonomous, dynamical system whether it \siced or  consists of three layers; the input layer, the processing layer and
unvoiced. Takenstated that there exists an exact predictive the output layer. The inputector isthe concatenation of L
rpodel given by external inputs, a biased input addlayed signals fetback
S(n)= F(s(m- 1),s(Art.— 1) ,sh 4 (¢ W) N2 from the processing layer which consists of N units with bipolar

sigmoid activation function. The output layeas a single unit



which linearly combineghe processing layer outputs. If the
network is fully connected, ithas a total of R¥(L+1)N
connections fronthe inputlayer tothe processing layer and N
connections fronthe processing layer teéhe output layer. A
RNN predictor with L=2 and N=3 is exhibited in Figure 1. Each
delay unit introduces adelay of iy samples. Thisform of
predictor has been extensively studiedli@] for both formant
and pitch prediction using the traditional approach. The
external inputs werdormed by taking p (typically8-10)
successive speech samples formant predictionand 1-3
samples at a distance equal to the pitch pefid pitch
prediction. In the context d), these predictors apobably
suboptimal and require a larger dimension than that is
suggested by the embedditiieory. Thefollowing equations
describe the operation of the network:

Y(n)=f(We Y(n-Tn)+W; R(n))

S(n) =W Y(n) 4)

where Y(n)=[y1(n),y2(n),[Min(n)] is the statevector, R(n)=
[1,5(n-1),s(mee-1),0MB(N-(d-1)te-1) is the augmented input
vector, W is the feedback weight matrix,;\i the inputweight
matrix, W, is the output weight matrix arg, is the network
time delay.

©)

Adaptation of W and W is performed usinghe real-time
recurrent learning (RTRL) algorithm [1Hnd W is adapted
using the wellknown LMS algorithm [12]. Atthe processing
layer, being hidden, error signals ai@ available andhey are
generated by backpropogatirtge output errorthrough the
linear combiner.
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Figure 1. Proposed Recurrent Neural Network.
It is clear that forn=Tg,

§(n+1)=F(s(n),s(n®),--, s(n-@d -1)),--) (5)
Due to the feedback, theemory ofthe network is infinite but
of fading nature. The authors conjectutigat this makes the
network more robust tthe slightly false estimations ofed On
the other hand, thisay allow selection of d smaller than that
required. It is also conjecturethat the selection ofinzTe

3. COMPARISON OF METHODS WITHIN
A UNIFIED FRAMEWORK

3.1 Speech Analysis

For a systematic comparison tfie approachesntroduced
above we adopthe framework illustrated in Figure 2 for
prediction [13]. The framework consists of twarts; i) The
memory unit, ii) The mapping unit.

Figure 2. A framework for prediction

Memory Unit Mapping Unt

The success of prediction depends on the following:

(a) theamount of information kept ithe memory unit
relevant to prediction

(b) the ability of themappingunit to realize the actual
relation between thenformation in the memory and the
predicted value.

Firstly we discuss thamount of past informatiothat can be
considered relevant to prediction in the case of speech signals.
As is well known, invoiced speech prediction waistinguish
between two types of correlations; i) short term correlations and
ii) longterm correlations. The former indicati®e dependency

of adjacent samples and the latter is a result opdrmdicity

in speech signals. The periodicity implies similaraynong
samples whiclareone periodapart. Thereforefor a successful
speech prediction theemoryunit should span a time interval

of length at least one pitch period.

Secondly wediscuss the structure of thememory in all
approaches. Fdhis purpose, we define thmemorydepth,Tp,

as the duration of the signhistory (in samples) stored in the
memory unit and thenemoryresolution,tr, as the reciprocal of

the delay between the signal samples stored in the memory unit.
In the traditional prediction approach (equation (1))rtienory

unit can be considered as a tapped ddiiag containing the
most recent p speech samples. Thatip andtg=1. On the
other hand, in thelynamical systems approach (equat{@j)

the memoryunit consists of g samples each separated 1y
samples. HereTp=dete and tr=1/te . In the pitch-formant
approach, thememory unit is made oftwo blocks. The first
block containghe pmost recent speech samples each separated
by a unit delay. Thesecond block consists of a few samples
around exactly one pitch period away frtme predicted sample
again each separated by a unit delay. As a resulovbsll

increases the robustness of the network to the estimation e”orsmemorydepth To, is slightly greater thathe pitch period and

in e by providing interleaved samplethat are used in
prediction.

each block has resolutiar=1.

We concludehat to meet the requirement gagntionedabove
in the traditionalapproach {g=1) we need a relatively large
value of p (or €) depending on the pitch period of thpeech



signal. However, a smaller value ot @ possible in the give similar performances in terms d@he prediction error.

dynamical systems approach by using a relatively lardpit at However, in case dinear mappingthe predictionperformance
the expense of a lower resolution. It appahet, for a given is expected to be worse when compareditto nonlinear
memorydepth, the number of samples in themoryunit and counterparts.

the resolution aréwo conflicting parameters ithe sense that o

our aim is to selectgths small as possible (to avoid the curse of N ‘
dimensionality), buyet keep the resolution as high as possible ‘
(not to miss samples relevant to prediction). In the traditional
pitch-formant approach, with the usetwb different blocks the
resolution is kept high(at least ineach block) without
sacrificing too much from dimensionality. Since information
corresponding tothe short andlong term correlations is
included in thememory unit with a high resolution, that

structure is expected to shothe bestperformance as a 24
predictor. &o\r
-2 Sq Y
Thirdly we demonstratedhe validity of our expectations 2d 8 1
through some simulations usingiced speech frametaken \w)
from male and female speakers. Spee@veformswere low- = 5 10 is 20 25
pass filtered at 3.4 kHz cut-off frequency, sampled ldi8 and Memory Depth
stored at 16 bits=ach analysis frame consisted of 256 samples. Figyre 3. Comparison of differeninemorystructures with the
The results were presentéar the memory structures with a linear mapping unit;female speech.

linear mapping unit by plotting the mean value of the prediction

) - 0: 1e=1, x:1e=3, _: pitch-formant memory block (p=8, M=3).
error (MSE) in dB with respect to the memory depth.

Figure 4 showshe performances of RNN predictdwith a
unity network delayn=1), MLP predictor and a linear predictor
with respect to the memory depth. Note that all of the predictors
havememoryresolutiontg=1. In bothRNN andMLP networks

the number of neurons was set to 4.alh simulations the
learning rate was set to 0.1 and kept fixed andniivorks
were trainedor 1000 epochsThe results weraveragedover

10 trials. Theperformance othe RBF network at comparable
complexities was found to beery poor with the learning

Figure 3 showshe resultscorresponding to a female speaker.
Here, the pitch period of the analysis frame is 24 samples. The
MSE of the pitch-formardpproach is shown asbaseline. The
so-called formantmemory blockconsists of thenost recent 8
samples and the so-called pitalemory blockconsists of 3
consecutive samples centeredteg pitch period. The other two
plots arefor memoryresolutionstr=1 andtr=1/3. Thepoor
performance othe lower resolution and thgpood performance

of the pitch-formantapproachare obvious. However, all  a5thmthat was implementeo, theRBF networkresults
memory structures have comparable performances when all are not shown to avoid overcrowdeglots. In Figure 4 the

relevant information is included in the memory as illustrated for baseline corresponds the performance othe pitch-formant

Tp > pitch period. RNN [8] with 8 most recent samples and 3 samples around the

. . . . . . pitch period. Its better performance at relatively lower
Finally we extend the discussion to the nonlin@apping unit complexity (11 input samples) isbvious. Notethat the RNN
and _present several experimental results. As mentioned, thesignificantly outperformsthe MLP network for very short
possﬂ_)le networks thatan be usedre MLP, 'RBF ar_ldRNN. memory depths (1-5 input samples). Theperformances
The firsttwo are feedforward networks. Being statithey do becomes comparable a#l short termcorrelated samples are
not contribute to thememory content of the predictor. The  jnciyded in the memory. This remains until the implicit memory
RNN, in contrast, haswo implicit effects onthe memory of RNN starts to capture the samples around the pitch period,
content: . o though,the externaimemorydepth is still less than thgitch

1) theeffective memorydepth is increased because of the  harind. Their performances meet agairthes externamemory

infinite fading memory (compensates for relatively smg)l d coversthe full pitch period Again this behaviour iscommon to
2) the missing samples in thmemory are partially all speech frames.

supplied by properly selectintipe network delayry different

from the embedding delay, (compensates for low resolution). Nevertheless, because dfs infinite memory, the RNN
Thus a predictor using an RNN #e mappingunit is expected  gutperformsthe MLP network if it is not stuck at a local
to outperformthe predictors usindLP and RBF in cases  minimum with a relatively bad performance. It is a general

where; belief that learning algorithms in tHeRNN explores amore
(the memory depth does not cover a full pitch period complex surface. To chedke frequency of occurrence of the
(ii)the memorydepthcovers a pitch periodhut at a low  ahove phenomena wan theRNN and theMLP networksover
resolution. 200 frames of speech takéom 4 speakers. In aimulations
In other words, for a given performance RNN allows a . was chosen as the first minimum of the mufnfrmation
relatively small d with a relatively largete, provided that function and d was chosen ahe smallest integer greater than
TnETe is properly selected. However, in cases wiadireelevant the estimated attractor dimension=4d+1), even though the

information is inthe memoryunit, we expectll structures to estimates areot expected to be accurate due to small size of



analysis frame. The results are presented in Figure 5. Here, thesynthesizer is operated in an autonomous manner by seeding it

solid line represents thigoundarywhere theperformances of
the two predictors are equal. Note that &N performsbetter
than theMLP for almostall theframes. So, we concludbat it
is very safe to use the RNN.

Memory Depth

Figure 4. Comparison of RNN vs. MLP (N=4g=1, 1p<Pitch
Period).

0: RNN, +: MLP, x: Linear, _: Pitch-formant RNN.

Another set of simulationsfor the male speaker with pitch
period 56 was performed to chetthe effect of the memory
resolution on theperformance. Fothis purpose, we fixed the
memorydepth to a value slightly larger thdne pitch period(
1=60). We changedhe embeddinglelay (equivalently, the
memoryresolution)from 1 t010. Sincetp=(de-1) Tg, for each
value ofte we have a different value ot.dFigure 6 illustrates
the performances dinear, MLP andRNN (for bothty=T¢ and
Tn#Te) predictors. The irregular behaviour all predictors is
due to the differentcombinations of samples used for
embedding withvarying degrees of relevance to prediction. To
get a better understanding of thidienomena consider the
following cases. Where=7, the samples used for prediction are
n-1, n-8, n-15, n-22, n-29, n-36, n-43, n-50, n-57. Here, the last
sample (n-57) isexactly one pitch periocaway from the
predicted sample. When=6, the samples usddr prediction

are n-1, n-7, n-13, n-19, n-25, n-31, n-37, n-43, n-49, n-55.
Notice that although more samplese usedor prediction at a
slightly higher resolutionthe performance is slightly worse due

to thefact that the samplavhich is exactly one pitch period
away is notincluded in the predictionAccording toFigure 6,

the variations in theerformance of RNNvith Tn2Te is smaller
than those of others, indicating the robustnesRMN to the
selection of embedding delay and dimension parameters.
Although we have ysedn=1 here, thechoice ofthe optimal
network delay for a given embedding is still an open problem.

3.2 Speech Synthesis

In the preceding section, thene step ahead prediction
paradigm is applied to obtain the nonlinearity)lF(n this
section, assuming that JF( has captured theunderlying
dynamics ofthe attractor, we use for speech synthesis. The

with an allzerostatevectorand feedinghe output to thelelay
line which is constructedhe same as thememory structure
employed in predictionHere, the fundamental question is
“Which predictor implementation ithe most suitable for
synthesis ?” We claim that the RNN with time delay embedding
appears thenost promising since it offers a lower dimension
for the state space. Lower dimensionality helps

a) to avoid curse of dimensionality.

b) to decrease the degree of mismatch in the analysis and
synthesis models.

c) to have a fasteconvergence tothe reconstructed
attractor.

d) to reduce the computational complexity
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(N=4)
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5
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Figure 6. Effect of Resolution onthe performance of all
structures (N=4)

x: RNN (te#1n), *: RNN (Te=tw), +: MLP,

o: Linear, _: pitch-formant RNN.

The mismatch concept ip), reflects thelifference among the
samples usefbr the prediction and synthesis. In the prediction,
the timedelayline is fed using samples takéom the original
signal. However, during synthesis the reconstructed samples are
used.



We did several simulations to justify our claims. The st of
simulations were carried out with clean speech. Insémnd
set, anoisy speech att5dB was usedNoisy speech was
generated by addingeromean Gaussian noise with a variance
accordinglyadjusted. The test withoisy speech igimed to
show which network exhibits good generalization. The
networks used are an RNN with N=4~d, 1==2 andty=1, and
two MLP networkswith N=4, ¢=8,12 andte=1. After the
predictive analysis, the networks were used symthesize
speech.

Figure 7 showsthe noise freewaveform togethemith the
synthesized waveforms.. Th®llowing conclusions can be
reached from the results:

(a) The RNN has converged very fast to the attractor that is
very similar to the original.

(b) The MLP network with de=8 has showed fast
convergencebut with an attractor dissimilar to the original
(failed to capture the underlying dynamics)

(c) The MLP networkwith d==12 hasconverged slowly to
an attractor thalooks better than the attractor in (b) but still
worse than the attractor in (a).

In addition results obtained in tm®isy case hashown ughat
the MLP networkhas captured thspecific details contributed
by the noise(overfitting) and hence is notvary general
network structure for synthesis.

The results herelearlyillustrate that theRNN with the delay
embedding is an appealing network for future research in
nonlinear speech processirnfat includes speech analysis,
speech synthesis and even speech enhancement.

4. CONCLUSIONS

In this study, a nonlinear predictive model of speech, based on
the method of time delay reconstructidms been presented. A
fully connectedrecurrent neural networfollowed by alinear
combiner has been proposed to reafime modellts prediction
performancehas beercompared to other structures in a unified
framework. These comparisons have shdtat theproposed
network offers satisfactory prediction at relatively lovirgput
dimensions and shows more robust behaviour to the selection of
embedding parametersamelythe embedding timéelay and

the embedding dimensioopmpared to MLRand, equivalently,

to RBF networks. The advantages of a lower input dimension

has been stressed in the context of speech synthesis and

justified viasome simulations for both cleamdnoisy speech.
As a result the proposed approach has lie@md promising for
applications that might employ nonlinear speech processing.
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Figure 7. Synthesized speech waveforms.
(a) Original waveform (b) RNN with N=4gd4, 1e=2, Tn=1
(c) MLP with N=4, ¢=8, t1e=1 (d) MLP with N=4, d=12



