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Abstract
In this paper, we exploit the similarity between source

compression and channel decoding to provide a new en-
coding algorithm for trellis vector quantization (TVQ).
We start by drawing the analogy between TVQ and the
process of sequence-ML channel decoding. Then, the
new search algorithm is derived based on the symbol-
MAP decoding algorithm, which is used in soft-output
channel decoding applications. Given a block of source
output vectors, the new algorithm delivers a set of prob-
abilities that describe the reliability of the different sym-
bols at the encoder output for each time instant, in the
minimum distortion sense. The performance of both the
new algorithm and the Viterbi algorithm is compared
using memoryless Gaussian and Gauss-Markov sources.
The two algorithms provide expected similar distortion-
rate results. This behavior is due to the fact that
sequence-ML decoding is equivalent to symbol-MAP de-
coding of independent and identically distributed data
symbols. In other words, delivering the sequence of min-
imum distortion symbols is equivalent to delivering the
minimum distortion sequence of symbols.

1 Introduction
The efficiency of data transmission is directly related to

the source compression process. Very often, we are inter-
ested in delivering information at rates lower than the en-
tropy of the original source. This approach results in a loss
in the fidelity of reproduction (distortion). The relation be-
tween the compression rate and the average distortion of re-
production is considered in the rate distortion theory. One of
the main outcomes of this theory is that the performance of
a source coding system approaches the distortion-rate the-
oretical limit as we increase the processing block length,
even for memoryless sources [1]. This fact motivated the
research in vector-based compression systems.

It has been proved that trellis waveform coding provide
near theoretical limit distortion-rate performance [2], [3],
[4]. A trellis vector quantization (TVQ) system is charac-
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terized by a finite-state machine (FSM) decoder and a trellis
search encoding algorithm. The channel output sequence is
fed into the FSM decoder which produces the correspond-
ing index of a reproduction codeword. A copy of the FSM
is used to construct the associated encoding trellis, whose
branches are colored by the reproduction codewords. Then,
we use a search algorithm to deliver the proper channel in-
put sequence, which represents the branch indices of the
minimum distortion path in the trellis.

There are several similarities between the areas of source
coding and channel coding, which are mainly attributed to
the duality between the rate distortion theory and the chan-
nel capacity dispute. Both the source encoder and the chan-
nel decoder are redundancy removal systems. Furthermore,
both areas of research use the Euclidean space and employ
lattice and trellis structures in the coding process. One of
the algorithms that are used with TVQ is the Viterbi algo-
rithm. The function of the Viterbi algorithm in searching
for the minimum distortion path is analogous to its func-
tion in delivering the most probable transmitted sequence
in channel decoding. In the context of channel decoding,
it is possible to use either symbol-MAP or sequence-MAP
algorithms, according to the application. Symbol-MAP de-
coding minimizes the probability of symbols in error, while
sequence-MAP decoding minimizes the probability of se-
quences of symbols (words) in error. Nonetheless, for the
special case of independent and identically distributed chan-
nel input symbols, the two algorithms are equivalent in the
sense that both algorithms minimize the probability of se-
quence of symbols in error.

When we apply the Viterbi algorithm with TVQ
(VTVQ), we do not havea priori knowledge about the
statistics of the source encoder output. Therefore, we as-
sume that the branch indices are independent and identically
distributed in anticipation of producing an uncorrelated and
uniformly distributed sequence of symbols; i. e., a redun-
dancy free sequence. According to this assumption, and
given a source output sequence of vectors, using an algo-
rithm that produces a sequence of minimum distortion sym-
bols is equivalent to using the Viterbi algorithm, which pro-



            

duces the minimum distortion sequence.
In this paper, we introduce a new TVQ search algo-

rithm. The new compression approach represents the “nat-
ural dual” to symbol-MAP trellis channel decoding. The
search algorithm is based on the early BCJR algorithm in-
troduced for channel decoding in [5]. The algorithm per-
forms decision-delayed processing and delivers for each
time instant a set of reliability (soft) values that are used
to decide on the minimum distortion source encoder output
symbol. Since the algorithm delivers soft information, in
the form of transition probabilities, we call this encoding ap-
proach “soft trellis vector quantization” (STVQ). The equiv-
alence between sequence-ML Viterbi and symbol-MAP en-
coding is shown in several simulation cases using memo-
ryless Gaussian and Gauss-Markov sources. Although, the
symbol-MAP algorithm is more complex than the Viterbi
algorithm, it has the potential to be extended to match the
source statistics. In order to benefit from the increased ca-
pacity of channels with memory, the symbol-MAP algo-
rithm has been modified to fit the problem of decoding cor-
related channels [6]. Similarly, we can modify the new com-
pression algorithm to use the source memory in order to
provide improved distortion-rate results.

2 Trellis Vector Quantization
Without loss of generality, we will only consider deter-

ministic FSM decoders [7]. The decoder is a lookup table
addressed by a shift-register of constraint lengthν andk-bit
inputs. Accordingly, the TVQ is characterized by a trel-
lis that hasM = 2k(ν−1) states, and2k branches stem-
ming out of each state. The branches are colored or la-
beled by the indices that address a reproduction codebook
C = {c0, c2, ..., cK−1}, whereK = 2kν . Encoding is per-
formed using a trellis search algorithm, by first deciding on
the minimum distortion path that corresponds to a sequence
of source output vectors. Then, the encoder generates the
branch indices{x0, x1, . . .} that constitute the minimum
distortion path. Given that a trellis quantizer is encoding
L-dimensional source output vectors, then the compression
rate is simplyR = k/L bit/sample.

3 Source Encoding and Channel Decoding
Consider a channel decoder that operates on the channel

output sequenceY N1 to produce the maximuma posteriori
probability sequencêXN

1 . This sequence represents the best
estimate for the sequenceXN

1 at the channel encoder input
in the Bayesian sense. In the process of estimatingX̂N

1 , the
channel decoder removes the controlled redundancy, which
was introduced for error protection. Following a similar ap-
proach, we use a source encoder to remove the redundancy
in the information source and deliver the sequence of sym-
bolsXN

1 . Therefore, we can imagine the information source
as some sort of a communications channel, which corrupts
a sequence of symbols with some sort of noise. TVQ en-

coding is performed by choosing the minimum distortion
sequence according to

XN
1 = arg min

XN1 ∈AN
D{XN

1 |Y N1 } (1)

where

D{XN
1 |Y N1 } =

N∑
n=1

d(Yn, xn|sn−1) (2)

andd(Yn, xn|sn−1) is the Euclidian distance between the
source output vectorYn and the codeword labeling the
branch with indexxn ∈ A = {0, 1, . . . , 2k − 1}, given
the statesn−1. Accordingly, the Viterbi algorithm searches
for the minimum distortion path by choosing, at each time
instant n, the branch labeled byxn−T , which produces
the minimum distortion, whereT represents the encoding
depth. The search is proceeded between a statesn−1 and
another statesn using the following metric

Mn = min
xn∈A

{Mn−1 + d(Yn, xn|sn−1) } (3)

whereMn−1 is the metric (distortion) at statesn−1.
On the other hand, MAP-decoding is performed using

the following rule

X̂N
1 = arg max

XN1 ∈AN
Pr{XN

1 |Y N1 } (4)

For the case of independent and identically distributed chan-
nel encoder input symbols, Eq. (4) reduces to

X̂N
1 = argmax

xn∈A

N∏
n=1

Pr{Yn|xn, sn−1} (5)

Since the logarithm is a monotonic function and the proba-
bility values are always positive, Eq. (5) is equivalent to

X̂N
1 = argmax

xn∈A

N∑
n=1

log p(Yn|xn, sn−1) (6)

wherep(Yn|xn, sn−1) is the transition probability between
the channel outputYn and the channel input, which is as-
sociated with channel encoder inputxn and encoder state
sn−1. It follows that, in order to implement the decision-
rule of Eq. (6), we may use the Viterbi algorithm to follow
the channel encoder trellis with the branch metric

Mn = max
xn∈A

{Mn−1 + log p(Yn|xn, sn−1) } (7)

whereMn−1 andMn are the metrics at statessn−1 andsn,
respectively.

The similarity between the two cases of employing the
Viterbi algorithm for source encoding and channel decoding



          

is mathematically supported by Eqs. (3) and (7). In fact, if
we assume that the channel probability distribution is

p(Yn|xn, sn−1) = exp{−d(Yn, xn|sn−1)} (8)

and we substitute this value ofp(Yn|xn) in Eq. (7), we get

Mn = max
xn∈A

{Mn−1 − d(Yn, xn|sn−1) } (9)

Note that the metric in Eq. (9) is identical to the metric in
Eq. (3). Hence, the problem of trellis vector quantization
is equivalent to the decoding problem of a convolutionally
encoded sequence transmitted over a channel characterized
by Eq. (8).

The conditional pdf given by Eq. (8) represents an as-
sociation probability that describes the degree of member-
ship of the the vectorYn to the set represented by the code-
word addressed byxn, sn−1. Moreover, this distribution is
a member of a family of distributions known as the Gibbs
distribution, which represents the solution to an optimiza-
tion problem in fuzzy clustering [8]. The Gibbs distribution
is controlled by a Lagrange multiplierη as

p(Yn|xn, sn−1) =
exp{−ηd(Yn, xn|sn−1)}

Z
(10)

whereZ is a normalizing factor. It is clear that this dis-
tribution assigns higher probability values to lower energy
configurations.

4 Soft Trellis Vector Quantization
In this section we use the analogy developed thus far, be-

tween the source and the channel, to introduce a new TVQ
search algorithm. The algorithm is based on the fact that
we may consider the TVQ encoding process as convolu-
tional decoding at the output of the channel defined by Eq.
(8). Consider a stationary discrete-time source with output
symbolYn at timen. Let the N-length output sequence be
Y N1 = {Y1, Y2, . . . , YN}, whereYn = [yn1, yn2, . . . , ynL].
Furthermore, the TVQ output is a branch indexxn ∈ A =
{0, 1, . . . , I − 1}, whereI = 2k. In order to produce a se-
quence of minimum distortion symbols, we first assume that
the source is the channel described by Eq. (8). Then, given
a source output sequenceY N1 , we choose an output symbol
according to

xn = arg max
i∈[0,I−1]

Pr {xn = i|Y N1 } (11)

The forward-backward procedure described in [5] is used
to solve for the set of probabilities Pr{xn = i|Y N1 }, i =
0, 1, . . . , I−1. We proceed by defining the joint probability
variable

λin(m) = Pr {xn = i, sn = m,Y N1 } (12)

It follows that

Pr {xn = i|Y N1 } =
∑M−1
m=0 λ

i
n(m)∑M−1

m=0

∑I−1
i=0 λ

i
n(m)

(13)

Recall that the problem of TVQ with the Viterbi algorithm
is similar to Viterbi decoding at the output of a memoryless
channel. Therefore, based on the same analogy the source
is considered memoryless in the derivation of the new algo-
rithm. Accordingly, we write Eq. (12) in the form

λin(m) = αin(m) · βn(m) (14)

where

αin(m) = Pr {xn = i, sn = m,Y n1 }

βn(m) = Pr {Y Nn+1|sn = m}

 (15)

It can be shown that the forward variable is evaluated using

αin(m) = γin(S
i
b(m))

I−1∑
j=0

αjn−1(S
i
b(m)) (16)

whereSib(m) is the state at which we arrive if we go back-
wards from statesn = m along the branchxn = i. Besides,

γin(m) = Pr {Yn|xn = i, sn−1 = m} (17)

We use Eq. (8) to substitute for the channel transition prob-
ability in Eq. (17), as follows

γin(m) = exp{−ηd(Yn, xn = i|sn−1 = m)} (18)

The constantη is introduced in Eq. (18) in order to control
the algorithm performance, as we will demonstrate in the
simulation section.

The backward variable is computed as

βn−1(m) =
I−1∑
j=0

βn(S
j
f (m)) · γjn(m) (19)

whereSjf (m) is the state at which we arrive if we go for-
ward from stateSn−1 = m along the branchxn = j.

5 Implementation Approach
One critical point to consider is the initialization of

αi0(m) andβN (m). In our simulations we start the pro-
cessing of each block of vectors from the zero state, thus,
we initialize the forward variable as

αi0(m) =
{

1
2k

m = 0
0 m 6= 0 ∀ i (20)

Then, we proceed in the computation ofαin(m) for n =
1, 2, . . . , N according to Eq. (16). On the other hand, ini-
tializingβN (m) depends on whether we know the final state



            

Table 1:The VTVQ and STVQ 1-bit coding performance for the
memoryless Gaussian source.

STVQ VTVQ
ν SNR (dB) CI (dB) SNR (dB) CI (dB)
2 4.747 ±0.005 4.734 ±0.005
3 4.867 ±0.004 4.815 ±0.005
4 5.203 ±0.004 5.108 ±0.006
5 5.185 ±0.004 5.145 ±0.004
6 5.325 ±0.004 5.320 ±0.004

or not. Practically, we can choose to start encoding from
a specific state, however, we cannot choose the last state,
which is controlled by the source output sequence. Thus

βN (m) =
1
M
, ∀m (21)

After that, we computeβn(m) for n = N,N − 1, . . . , 1
using Eq. (19). After evaluatingαin(m) andβn(m), we
computeλin(m) using Eq. (14), then, we evaluate the set
of probabilities of interest using Eq. (13). Encoding is per-
formed by delivering thexn = i associated with the maxi-
mum probability value, as indicated in Eq. (11).

It is clear that the values of the forward and backward
variables depend geometrically on past and future values
of large number of terms. Consequently, it is very likely
that their values get significantly large or vanishingly small.
To solve this problem we scale eachαin(m) andβn(m) by∑
i

∑
m α

i
n(m) and

∑
m βn(m), respectively. The same

approach is successfully adopted in [9]. This normalization
step compensates for the fact that we are not using the vari-
ableZ, which is used in Eq. (10).

6 Simulation Results
We provide in this section the rate-distortion simulation

results of encoding a memoryless Gaussian source, and a
Gauss-Markov source. The performance results are mea-
sured in terms of signal to MSE quantization noise ratios
(SNR). A training sequence of30, 000 samples is used to
search for a locally optimal codebook using the known
LBG-algorithm [7]. In order to initialize the codebook
search process, we use the techniques mentioned in [10].
For the memoryless Gaussian source, we use a random ini-
tial codebook drawn from a zero-mean and0.75 variance
Gaussian distribution. On the other hand, we initialize the
trellis branches with±σy for the Gauss-Markov source,
whereσ2

y is the source variance. Then, we employ the gen-
erated codebook to find an average SNR value as well as
the corresponding 95 percent confidence interval, using a
100 sequences of length 1500 samples each. The computa-
tion of the confidence interval is based on the fact that the
computed distortion for each sample sequence is a sample
average. Thus, we can apply the central limit theorem to

Table 2:The VTVQ and STVQ 1-bit coding performance for the
AR(1) source,ρ = 0.9.

STVQ VTVQ
ν SNR (dB) CI (dB) SNR (dB) CI (dB)
2 6.821 ±0.127 6.864 ±0.125
3 8.662 ±0.067 8.655 ±0.084
4 10.051 ±0.058 9.976 ±0.058
5 10.794 ±0.029 10.744 ±0.024

claim that the distribution of the computed sample distor-
tions is Gaussian. Accordingly, the mean of the sample av-
erage distortions is used to compute the average SNR, and
the variance is used to compute the confidence interval.

In the first case study we consider theR = k/L = 1/1 =
1 bit/sample encoding of a memoryless unit-variance Gaus-
sian source. The MSE-distortion rate function of a Gaussian
source is given by

DG(R) = 2−2Rσ2
y (22)

whereR is the compression rate in bits/sample. Thus, for a
unit-variance source and rate 1 bit/sample,DG(1) = 0.25,
or equivalently6.02 dB. In Table 1, we show the simulation
results for several trellis constraint lengthsν, where we ob-
serve the close performance of the two algorithms. In Tables
2, 3, we demonstrate the performance of the two approaches
applied to encoding a first order Gauss-Markov source with
correlation coefficientρ = 0.9. In Table 2, we encode at
a rateR = k/L = 1/1 bit/sample for several values ofν,
while the results in Table 3 are forR = 1/2 bit/sample. The
MSE-distortion rate function for a first order Gauss-Markov
source is

DG = 2−2R(1− ρ2)σ2
y (23)

Accordingly,DG(0.5) = 10.22 dB, andDG(1) = 13.23
dB. In the following section we discuss the simulation re-
sults and comment on the algortihms’ behavior.

7 Discussion
We have applied in this paper the forward-backward

symbol-MAP algorithm in the area of data compression.
The new algorithm delivers a sequence of minimum distor-
tion symbols, which is equivalent to the minimum distortion
sequence generated by the Viterbi algorithm. Experimental
results showed that an encoding depth of at least80kν vec-
tors is required for the new algorithm to perform as well as
the Viterbi algorithm. On the other hand, the survivor paths
of the Viterbi algorithm seem to converge after processing
40kν vectors. The Lagrange multiplierη (refer to Eq. (18))
controls the degree of association of the source output vec-
tors to the different encoding sets. It is shown in the litera-
ture of Fuzzy clustering that the value ofη is related to a soft
average distortion measure [8]. In the context of this paper,



         

Table 3: The VTVQ and STVQ 1/2-bit coding performance for
the AR(1) source,ρ = 0.9.

STVQ VTVQ
ν SNR (dB) CI (dB) SNR (dB) CI (dB)
2 5.981 ±0.082 6.049 ±0.121
3 7.408 ±0.058 7.475 ±0.043
4 8.280 ±0.037 8.224 ±0.026
5 8.685 ±0.011 8.569 ±0.019

we found that there is an optimal upper value ofη for each
case, after which the algorithm fails to converge to an “ac-
ceptable” optimal encoding configuration (codebook). This
value was usually proportional toν/(DL), whereD is the
expected MSE distortion of reproduction.

Although the STVQ algorithm is more complex than
the Viterbi algorithm, a simplified version of the forward-
backward algorithm [11] can ease the complexity issue.
Nevertheless, the STVQ algorithm has the potential to be
extended to use the source statistics (source memory) in
the encoding process. Note that, we are not completely
using the memory of the source in vector-based compres-
sion, since the vectors themselves are correlated. For ex-
ample, we still have a potential of1.5 dB of improvement
using a constraint-length 5 trellis (Table 3), and the gap in-
creases with lower constraint-length trellises (lower com-
plexity). This motivates the extension of the symbol-MAP
algorithm to make use of the available resources by project-
ing the source memory onto the trellis encoding path.
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