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ABSTRACT
Technically, all image data compression schemes can be
categorized into two groups as lossless (reversible) and lossy
(irreversible). Although some information is lost in the lossy
compression, especially for the radiologic image compression,
new algorithms can be designed to minimize the effect of data
loss on the diagnostic features of the images. Wavelet transform
(WT) constitute a new compression technology that has been
described  in natural and medical images. In this study, the well
known Shapiro’s embedded zerotree wavelet algorithm (EZW)
for image coding is modified. It is designed to optimize the
combination of zerotree coding and Huffman coding. It is shown
that the multi-iteration algorithms and particularly the two-
iteration EZW for a given image quality produce lower bit rates
than Shapiro’s. It is applied for the medical images and here, the
thorax radiology is chosen as a sample image and the good
performance is codified.

1.� INTRODUCTION

Image compression is essential for applications such as
transmission and storage in data bases. A major application
domain of medical imaging technology is radiology where some
of the imaging modalities include computed tomography (CT),
magnetic resonance imaging (MRI), ultrasound, and positron
emission tomography (PET), in the picture archiving and
communication systems (PACS) enviroment [1]. It is well known
that all image data compression schemes can be categorized into
the lossless (reversible) and lossy (irreversible) groups. Although
lossless one is especially preferred in medical images , it makes
necessary the use of lossy schemes due to the having relatively
low achieved compression ratios. This musn’t cause to have the
less diagnostic features. Therefore the new algortihms can be
developed to minimize the effect of data loss on the diagnostic
features of the image [2]. Although the JPEG (Joint Photographic
Experts Group)  compression technique has essentially become a
standard [3], it suffers from blocking artifacts that becomes more
evident with increasing compression ratios [4]. To minimize or
prevent artifacts new compression techniques are still studying.
Since 1987, Wavelets transform (WT) constitute a new
compression technology that has been described in natural and
medical images [5, 6]. The most popular compression techniques
Shapiro's technique [7] is based on the  WT [8] and on the self
similarity inherent in the images [9] where the wavelet
coefficients are partially ordered in magnitude by comparison to
a set of decreasing thresholds which determine their significance
[9,10]. In this study, It is developed a modified version of the
original Shapiro’s EZW algorithm which produces better image

qualities at the same compression ratios, especially, at low bit
rate. The details of this algorithm will be described in further
section.

This paper is organized as follows. In Section 2, A short
description of Wavelet transform and Image compression. In
Section 3, It is described the new algorithm together with the
basic EZW algorithm. Finally, summary the major findings and
outline our future work is given.

2.� WAVELET TRANSFORM AND IMAGE
CODING

2.1 A Short Description of Wavelet Transform

A wavelet is a “small wave” having the oscillating wavelike
characteristic and the ability to allow simultaneous time and
frequency analysis by the way of a time-frequency localization of
the signal. Wavelet systems are generated by dilating and
translating a single prototype function or wavelet ψ(t)
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The mother or basic wavelet ψ must satisfy ∫ ψ(x) dx =0 , (i.e.
The condition on ψ  should be Cψ = ∫ |ω| -1 |Ψ| 2 dω < ∞ , where
Ψ is the Fourier transform  of ψ ;  if ψ ( t )  decays faster  than  | t
| -1 for t → ∞ , then this condition is equivalent to the one above).
The continuous wavelet transform of f(t) with respect to the
wavelet ψ(t) is then
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The wavelet transform coefficients are given as inner products of
the function being transformed with each of the basis functions.

The inverse continuous wavelet transform is defined [11] as
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This continuous wavelet transform and inverse of it can be
expressed for the functions of two-dimensions.

The second type of wavelet transform is defined as the wavelet
series expansion. Again, a basic wavelet is scaled by binary
scaling and translated by a dyadic translations to form a set of
basis functions. For the wavelet expansion, a two-parameter
system which is defined for a signal f(t) becomes
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and the )(, tkjψ  formed from the mother wavelet ψ (t) are the

wavelet expansion functions that usually form an orthogonal
basis of L2 (R) defined as

)2(2)( 2/
, ktt jj
kj −= ψψ                                     (5)

where both j and k are integer indices where j determines the
dilation while k specifies the translation. The two-dimensional
set of coefficients kja ,  is called the discrete wavelet transform

(DWT) of f(t). A more specific form indicating how the kja , ’s

are calculated by writing inner products as
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(Note that mkljmlkj tt ,,,, )(,)( δδψψ =><  where l and m are

integers, kj ,δ  is the Kronecker delta function, and <. , .>

indicates inner product.) [11-13].

2.2 Image Compression

A DWT which provides a compact multiresolution representation
of the image where multiresolution supplies a simple hierarchical
framework for interpreting the image information. The DWT
decomposes an image into a set of successively smaller
orthonormal images.

in order to obtain a set of biorthogonal subscales of images, the
original image is decomposed at different scales. The hierarchical
wavelet decomposition will be used for images suggested by
Mallat [14]. The lowpass (L) and high pass (H) filters are applied
to the image in both the horizontal and vertical directions, and
the filter outputs subsampled by a factor 2, generating three
orientation selective high-pass subbands HH, HL, LH and a
lowpass subband LL. The process is then repeated on the LL
band to generate the next level  of the decomposition, etc. The 3-
level hierarchical subband decomposition which separates the
information of the image at different scales and orientations is
shown in Figure 1 to represent the parent-child  dependencies of
subbands. In this figure the arrows point from parents to child for
a 3-scale wavelet. This scheme can be extended to larger number
of subbands [15].

3.� THE NEW ALGORITHM

The wavelet decomposition is an alternative representation of
image data but the number of bits used to store it has not
changed. To compress the image data, it must be decided which
coefficients to send and how many bits to use to code them.

In the Shapiro’s EZW algorithm is based in the construction of
dominant and significant lists for a given image which is
decorrelated with a wavelet transform. In the dominant list, the

information about the significance of a coefficient is coded,
while in the significant list only the values for the significant
coefficients are kept up to a given degree of precision.

Figure 1.Parent-child dependencies of subbands.

In Shapiro´s scheme, the significance of a coefficient at a given
iteration is determined based on its comparison with a threshold
(T): If the value of the coefficient is greater than T, the
coefficient is significant while, if it is smaller than T, it is
considered insignificant. In either case, two possibilities are
considered and coded by a different symbol. When the
coefficient is significant, its sign is coded: POS for positive
values and NEG for negative values. When the coefficient value
is below threshold, the values of the coefficient descendants,
which are the corresponding coefficients in lower scales are
analysed. If all the descendants are insignificant, we have a ZTR
and there is no need to code them. When some of the
descendants are significant, however, we have an isolated zero
(IZ), and the descendants have to be codified individually. Thus,
4 symbols (2 bits) are enough to code completely the dominant
list. The same procedure is performed in all scales with a
prefixed order until the dominant list is completed. The ordering
procedure is described in Figure 2 also for a 3-scale wavelet.
When the dominant list is completed, the magnitudes of the
significant coefficients are refined one additional bit of precision
(coded by 0’s or 1’s). ). The same scheme is repeated iteratively
alternating a dominant pass and a subordinate pass and then,
reducing the threshold. In this way, the values of the coefficients
are successively approximated at each iteration. As a final stage,
the dominant list is Huffman coded to obtain further data
compression [7].

Therefore, we studied the symbol distribution in the dominant
list for several images. Thus our idea is to code information
about the coefficient value along with information about the
value of its descendants, by diversifying the ZTR symbol into
several other symbols.



Figure 2. Scanning order of the subbands for encoding of a
significant map.

In this way, we still take advantage of the data reduction
achieved by ZTR symbol while, at the cost of introducing extra
symbols, we  are  able  to  convey  more  information  about  the
coefficient value. We propose a method that combines two or
more iterations of the original algorithm into one, comparing the
coefficient values simultaneously to two different tresholds: T1
and T2, with T1>T2. Then, two alternatives have been
considered depending on the number of symbols used to code the
significance of a coefficient. In both cases, the symbols for the
ZTR and IZ are still used to code those coefficients insignificant
relative to T2. In the first case, the four symbols PIZ2, NIZ2,
PZTR2 and NZTR2 code simultaneously the sign of coefficients
in [T1,T2] i.e. those whose value is significant relative to T2, but
insignificant relative to T1, and also the significance of their
descendants. Thus, PIZ2 and NIZ2 code respectively positive
and negative coefficients with some significant descendants,
while PZTR2 and NZTR2 code positive and negative coefficients
whose descendants are insignificant. In this case, 8 symbols (3
bits) are needed to code the significant list. In the second case,
each of the symbols used to code coefficients significant relative
to T1 is also split into two new symbols to distinguish those
significant coefficients whose descendants are significant relative
to T2 from those whose descendants are insignificant. Therefore,
POS splits into PIZ1 and PZTR1, and NEG into NIZ1 and
NZTR1. Thus, for this second alternative 10 symbols (4 bits) are
needed to code the dominant list.

In summary, both alternatives need more bits (3 or 4 bits) than
the original algorithm (2 bits) to code the dominant list but, as
we will see in the Results, the total number of symbols is reduced
as many of the old ZTRs are now coded with other symbols
conveying more information in a single step.

4.� RESULTS

A test image is chosen a 512x512 thorax radiography. Firstly, the
image is transformed using a 6-scale biorthogonal wavelet [7]
and then, coded with each of the algorithms described above.
They are followed by adaptive Huffman coding which is one of
the noiseless coding scheme. After an entropy analysis, it is
found that the best performance is obtained when only two
iterations are combined although higher compression ratio than
original algorithm is obtained for three or more iterations but
lower one is achieved for two iterations. Figure 3 illustrates the
good performance of EZW algorithms for the thorax radiography
codified at 0.5 bit Per pixel (bpp) with peak signal-to-noise ratio
(PSNR) of 49 dB.

Figure 3.Thorax radiography: Original image at the top and the
image coded at 0.5 bpp at the bottom.
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It is chosen a compression ratio for which the images display
good visual quality, similar to original, although with different
PSNRs. It is found that, in general, the signal-to-noise ratio for
the medical image needs to be higher by approximately 6 dB than
the natural image (for example Lena) to be visually acceptable
(i.e. without blurry appearance or block-like artifacts), although
the number of steps necessary to reach this level of visual quality
is the same for the both kind of images. To reach the same PSNR
with Shapiro’s algorithm, 0.65 bpp are necessary for the
radiography.

Figure 4. PSNR versus bpp for the thorax radiography

To give a quantitative idea of the behaviour of the EZW
algorithms at different bit rates, it is computed the PSNR and
the bits per pixel necessary to code the image at each
iteration, and plotted it in Figure 4 for Shapiro’s (dashed
line), the modified algorithm (solid line) and standard JPEG
algorithm (dotted line). For a given PSNR, the compression
ratio obtained with modified algorithm is always higher than
the results obtained from the others. It is obviously seen that
the performance of the JPEG is below both EZW algorithms.
The difference in performance between the EZW algorithms
and JPEG is larger at very low bit rates (0.1-0.3 bpp) for
which JPEG produces images with very low PSNRs. In
addition, images coded at low bit rates with JPEG are hardly
recognizable, while those coded with either of the EZW
algorithms show a better visual quality.

5.� SUMMARY AND CONCLUSION

In this study, it is presented a modified version of the embedded
zerotree wavelet basic algorithm introduced by Shapiro that can
be applied to natural and medical images codec. The modified
algorithm shows a clear advantage in the compression ratio
achieved for a given SNR over traditional EZW and it works at
higher speed. It is concluded that for a given image quality the
modified one produced lower bit rates than Shapiro’s EZW. The
new approach is more efficient for applications demanding high
visual quality which often happens in medical image
compression rather than an embedded representation of the
image. Then, the new technique can be adapted to provide a final

image with a given visual quality by performing n-iterations
combined in a single step. A 512x512 thorax radiograph image is
chosen as a sample image. The results show that image quality is
better than the one obtained by JPEG and EZW. . Preliminary
results in medical images show that the new algorithm gives
better visual qualities than other lossy methods traditionally used.
As a further research, the algorithm can be oriented to determine
the advantages of it in an improved version of Shapiro’s
algorithm recently introduced by Said and Perman [16] and apply
for the other wavelet transforms [17,18].
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