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Abstract—In this article, two closed and convex sets for blind
deconvolution problem are proposed. Most blurring functions in
microscopy are symmetric with respect to the origin. Therefore,
they do not modify the phase of the Fourier transform (FT) of
the original image. As a result blurred image and the original
image have the same FT phase. Therefore, the set of images
with a prescribed FT phase can be used as a constraint set in
blind deconvolution problems. Another convex set that can be
used during the image reconstruction process is the Epigraph
Set of Total Variation (ESTV) function. This set does not need a
prescribed upper bound on the total variation of the image. The
upper bound is automatically adjusted according to the current
image of the restoration process. Both the TV of the image and
the blurring filter are regularized using the ESTV set. Both the
phase information set and the ESTV are closed and convex sets.
Therefore they can be used as a part of any blind deconvolution
algorithm. Simulation examples are presented.

Index Terms—Projection onto Convex Sets, Blind Deconvolu-
tion, Inverse Problems, Epigraph Sets

I. INTRODUCTION

A wide range of deconvolution algorithms has been devel-
oped to remove blur in microscopic images in recent years
[1]–[17]. In this article, two new convex sets are introduced for
blind deconvolution algorithms. Both sets can be incorporated
to any iterative deconvolution and/or blind deconvolution
method.

One of the sets is based on the phase of the Fourier trans-
form (FT) of the observed image. Most point spread functions
in x-y plane of microscopes are symmetric with respect to
origin. Therefore, Fourier transform of such functions do not
have any phase. As a result, FT phase of the original image and
the blurred image have the same phase. The set of images with
a prescribed phase is a closed and convex set and projection
onto this convex set is easy to perform in Fourier domain.

The second set is the Epigraph Set of Total Variation
(ESTV) function. Total variation (TV) value of an image
can be limited by an upper-bound to stabilize the restoration
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process. In fact, such sets were used by many researchers in
inverse problems [13], [18]–[23]. In this paper, the epigraph
of the TV function will be used to automatically estimate an
upper-bound on the TV value of a given image. This set is also
a closed and convex set. Projection onto ESTV function can
be also implemented effectively. ESTV can be incorporated
into any iterative blind deconvolution algorithm.

Another contribution of this article is that the ESTV set
is applied onto the blurring functions during iterative decon-
volution algorithms. Blurring functions are smooth functions,
therefore their total variation value should not be high.

Image reconstruction from Fourier transform phase infor-
mation was first considered in 1980’s [24]–[27] and total
variation based image denoising was introduced in 1990’s [28].
However, FT phase information and ESTV have not been used
in blind deconvolution problem to the best of our knowledge.

Recently, Fourier phase information is used in image quality
assessment and blind deblurring by Leclaire and Moisan
[29], in which phase information is used to define an image
sharpness index, and this index is used as a part of a deblurring
algorithm. In this article FT phase is directly used during the
blind deconvolution of fluorescence (FL) microscopic images.

The paper is organized as follows. In Section II, we review
image reconstruction problem from FT phase and describe the
convex set based on phase information. In Sections III, we de-
scribe the Epigraph set of the TV function. We modify Ayers-
Dainty blind deconvolution method by performing orthogonal
projections onto FT phase and ESTV sets in Section IV. We
present our experimental results in Section V and conclude
the article in Section VI.

II. CONVEX SET BASED ON THE PHASE OF FOURIER
TRANSFORM

In this section, we introduce our notation and describe how
the phase of Fourier transform can be used in deconvolution
problems.

Let xo[n1, n2] be the original image and h[n1, n2] be the
blurring function repsenting a slice of the 3-D point spread
function. The observed image y is obtained by the convolution
of h with x0:

y[n1, n2] = h[n1, n2] ∗ xo[n1, n2], (1)
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where ∗ represents the two-dimensional convolution operation.
The discrete-time Fourier transform Y of y is, therefore, given
by

Y (w1, w2) = H(w1, w2)Xo(w1, w2). (2)

When h[n1, n2] is symmetric with respect to origin
(h[n1, n2] = (0, 0)) H(w1, w2) is real. Our zero
phase assumption is H(w1, w2) = |H(w1, w2)|.
Blurring functions satisfying this assumption includes
Gaussian blurs and uniform discs. Therefore, phase
of Y (w1, w2) = |Y (w1, w2)|e(j]Y (w1,w2)) and
Xo(w1, w2) = |X0(w1, w2)|e(j]Xo(w1,w2)) are the same:

]Y (w1, w2) = ]Xo(w1, w2), (3)

for all (w1, w2) values.
In Figure 1, a one-dimensional (1-D) example is shown.

The original signal x is shown in Fig. 1(a). The signal y is
obtained by convolving x with h, which is a Gaussian filter.
FT Phase plots of x and y are the same as shown in Figure
1(d).

(a)

(b)

(c)

(d)

Fig. 1: (a) A 1-D signal x, (b) Gaussian filter h with σ = 1.2,
(c) filtered signal y = h ∗ x and, (d) FT phase of x and y
obtained using an FFT with size 128.

Based on the above observation the following set can be
defined:

Cφ = {x[n1, n2] | ]X(w1, w2) = ]Xo(w1, w2)}, (4)

which is the set of images whose FT phase is equal to a given
prescribed phase ]Xo(w1, w2).

It can easily be shown that this set is closed and convex in
RN1 × RN2 , for images of size N1 ×N2.

Projection of an arbitrary image x onto Cφ is imple-
mented in Fourier domain. Let the FT of x be X(w1, w2) =
|X(w1, w2)|ejφ(w1,w2). The FT Xp of its projection xp is
obtained as follows:

Xp(w1, w2) = |X(w1, w2)|ej]Xo(w1,w2), (5)

where the magnitude of Xp(w1, w2) is the same as the magni-
tude of X(w1, w2) but its phase is replaced by the prescribed
phase function ]Xo(w1, w2). After this step, xp[n1, n2] is
obtained using the inverse FT. The above operation is im-
plemented using the FFT and implementation details are
described in Section IV.

Obviously, projection of y onto the set Cφ is the same as
itself. Therefore, the iterative blind deconvolution algorithm
should not start with the observed image. Image reconstruction
from phase (IRP) has been extensively studied by Oppenheim
and his coworkers [24]–[27]. IRP problem is a robust inverse
problem. In Figure 2, phase only version of the well-known
Lena image is shown. The phase only image is obtained as
follows:

v = F−1[Cejφ(w1,w2)] (6)

where F−1. represents the inverse Fourier transform, C is a
constant and φ(w1, w2) is the phase of Lena image. Edges
of the original image are clearly observable in the phase
only image. Therefore, the set Cφ contains the crucial edge
information of the original image xo.

(a) (b) (c)

Fig. 2: (a) noisy “Lena” image, (b) Phase only version of the
“Lena” image, and (c) phase only version of the noisy “Lena”
image.

When the support of xo is known, it is possible to recon-
struct the original image from its phase within a scale factor.
Oppenheim and coworkers developed Papoulis-Gerchberg type
iterative algorithms from a given phase information. In [26]
support and phase information are imposed on iterates in space
and Fourier domains in a successive manner to reconstruct an
image from its phase.

In blind deconvolution problem the support regions of xo
and y are different from each other. Exact support of the
original image is not precisely known; therefore, Cφ is not
sufficient by itself to solve the blind deconvolution problem.
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However, it can be used as a part of any iterative blind
deconvolution method.

When there is observation noise, Eq. (1) becomes:

yo = y + ν, (7)

where ν represents the additive noise. We use bold face letters
and underlined bold face letters for N dimensional vectors and
N +1 dimensional vectors, respectively. In this case, phase of
the observed image is obviously different from the phase of the
original image. Luckily, phase information is robust to noise
as shown in Fig. 2c which is obtained from a noisy version
of Lena image. In spite of noise, edges of Lena are clearly
visible in the phase only image. Gaussian noise with variance
σ = 30 is added to Lena image in Fig. 2a. Fig. 2(b) is obtained
from the original Lena image and Fig. 2(c) is obtained from
the phase of noisy Lena image, respectively.

FTs of some symmetric blurring functions may take neg-
ative values for some (w1, w2) values. In such (w1, w2)
values, phase of the observed image Y (w1, w2) differs from
X(w1, w2) by π. Therefore, phase of Y (w1, w2) should be
corrected as in phase unwrapping algorithms. Or some of the
(w1, w2) values around (w1, w2) = (0, 0) can be used during
the image reconstruction process. It is possible to estimate the
main lobe of the FT of the blurring function from the observed
image. Phase of FT coefficients within the main lobe are not
effected by a shift of π.

In this article, the set Cφ will be used as a part of the
iterative blind deconvolution schemes developed by Dainty et
al [30] and Fish et al [31], together with the epigraph set of
total variation function which will be introduced in the next
section.

III. EPIGRAPH SET OF TOTAL VARIATION FUNCTION

Bounded total variation is widely used in various image
denoising and related applications [18], [19], [32]–[36]. The
set CTV of images whose TV values is bounded by a prescribed
number ε is defined as follows:

CTV = {x : TV(x) ≤ ε}, (8)

where TV of an image is defined, in this paper, as follows:

TV(x) =

N1∑
i,j=1

|x[i+1, j]−x[i, j]|+
N2∑
i,j=1

|x[i, j+1]−x[i, j]|.

(9)
This set is a closed and convex set in RN1×N2 . Set CTV can
be used in blind deconvolution problems. But the upper bound
ε has to be determined somehow a priori.

In this article we increase the dimension of the space by
1 and consider the problem in RN1×N2+1. We define the
epigraph set of the TV function:

CESTV = {x = [xT z]T | TV(x) ≤ z}, (10)

where T is the transpose operation.
The concept of the epigraph set is graphically illustrated in

Fig. 3. Since TV(x) is a convex function in RN1×N2 set the
CESTV is closed and convex in RN1×N2+1. In Eq. (10) one
does not need to specify a prescribed upper bound on TV of

an image. An orthogonal projection onto the set CESTV reduces
the total variation value of the image as graphically illustrated
in Fig. 3 because of the convex nature of the TV function. Let
v be an N = N1×N2 dimensional image to be projected onto
the set CESTV. In orthogonal projection operation, we select the
nearest vector x? on the set CESTV to w. The projection vector
w? of an image v is defined as:

w? = arg min
w∈CESTV

‖v −w‖2, (11)

where v = [vT 0]. The projection operation described in (11)
is equivalent to:

w? =

[
wp

TV(wp)

]
= arg min

w∈CESTV

‖
[

v
0

]
−
[

w
TV(w)

]
‖, (12)

where w? = [wTp ,TV(wp)] is the projection of (v, 0) onto the
epigraph set. The projection w? must be on the boundary of
the epigraph set. Therefore, the projection must be on the form
[wTp ,TV(wp)]. Equation (12) becomes:

w? =

[
wp

TV(wp)

]
= arg min

w∈CESTV

‖v− w‖22 + TV(w)2. (13)

It is also possible to use λTV(.) as a the convex cost function
and Eq. 13 becomes:

w? =

[
wp

TV(wp)

]
= arg min

w∈CESTV

‖v−w‖22 +λ2TV(w)2. (14)

The solution of (11) can be obtained using the method that we
discussed in [34], [37]. The solution is obtained in an iterative
manner and the key step in each iteration is an orthogonal
projection onto a supporting hyperplane of the set CESTV.

Fig. 3: Graphical representation of the orthogonal projection
onto the set CESTV defined in (11). The observation vector
v = [vT 0]T is projected onto the set CESTV, which is the
epigraph set of TV function

In current TV based denoising methods [19], [33] the
following cost function is used:

w∗ = argmin
w
‖v −w‖22 + λTV(w). (15)

However, we were not able to prove that Eq. (15) corresponds
to a non-expansive map or not. On the other hand, minimiza-
tion problem in Eq. (13) and (14) are the results of projection
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onto convex sets, as a result they correspond to non-expansive
maps [5], [18], [32], [38], [38]–[44]. Therefore, they can be
incorporated into any iterative deblurring algorithm without
affecting the convergence of the algorithm.

IV. HOW TO INCORPORATE CESTV AND Cφ INTO A
DEBLURRING METHOD

In this section, we present our implementation to integrate
phase and TV based convex sets approach into Blind Ayers-
Dainty Method with Phase and ESTV sets.

One of the earliest blind deconvolution methods is the
iterative space-Fourier domain method developed by Ayers
and Dainty [30]. In this approach, iterations start with a
xo[n] = xo[n1, n2], where we introduce a new notation to
specify equations [n] = [n1, n2]. For example, we rewrite Eq.
(1) as follows:

y[n] = h[n] ∗ xo[n]. (16)

The method successively updates h[n] and x[n] in a Wiener
filter-like equation. Here is the ith step of the algorithm:

1) Compute X̂i(w) = F{xi[n]}, where F represents the
FT operation and w = (w1, w2), with some abuse of
notation.

2) Estimate the blurring filter response using the following
equation

H̃i(w) =
Y (w)X̂∗i (w)

|X̂i(w)|2 + α/|Ĥi(w)|2
, (17)

where α is a small real number.
3) Compute h̃i[n] = F−1{H̃i(w)}
4) Impose the positivity constraint and finite support con-

straints on h̃i[n]. Let the output of this step be ĥi[n].
5) Compute Ĥi(w) = F{ĥi[n]}
6) Update the image

X̃i(w) =
Y (w)Ĥ∗i (w)

|Ĥi(w)|2 + α/|X̂i(w)|2
, (18)

7) Compute x̂i[n] = F−1{X̂i(w)}
8) Impose spatial domain positivity and finite support con-

straint on x̂i[n] to produce the next iterate x̂i+1[n].
Iterations are stopped when there is no significant change

between successive iterates. We can easily modify this algo-
rithm using the convex sets defined in Section II and III.

Phase information is imposed on the current iterate as
follows:

X̄i(w) = |X̃i(w)|ej]Y (w), (19)

where ]Y (w) is the phase of Y (w). This step is the pro-
jection onto the set Cφ. As a result step 7 becomes x̃i[n] =
F−1{X̄i(w)}. We also introduce a new step to Ayers and
Dainty’s algorithm as follows: Project x̃i[n] onto the set CESTV
to obtain x̂i+1[n]. The flowchart of the proposed algorithm is
shown in Fig. 4.

Since the filter is a zero-phase filter in microscopic im-
age analysis h[n1, n2] = h[−n1,−n2] = h[−n1, n2] =
h[n1,−n2] this condition is also imposed on the current iterate
in Step 4.

The term “support” refers to the extent of the image. Let
us assume that the 2D image is N1 × N2. Its phase can be
computed by L1 × L2 DFT, where L1 ≥ N1 and L2 ≥ N2.
Inverse FFT may produce nonzero values outside the N1×N2

region. In this case we make the values of pixels outside the
support region (N1 ×N2 region) simply zero.

Global convergence of Ayers-Dainty method has not been
proved. In fact, we experimentally observed that it may diverge
in some FL microscopy images. Projections onto convex sets
are non-expansive maps [44]–[46], therefore, they do not
cause any divergence problems in an iterative image debluring
algorithm.

Impose phase
constraint

2) Impose Fourier
constraint

1) FFT

PES-TV

Impose image 
constraint

8) Impose 
spatial domain

constraint

7) IFFT

3) IFFT

4) Impose blur 
constraint

5) FFT

 𝐻𝑖

 𝑥𝑖
 ℎ𝑖

 ℎ𝑖

 𝐻𝑖
 𝑋𝑖

 𝑥𝑖

 𝑥𝑖

 ℎ𝑖

 𝑋𝑖

PES-TV

 𝑥0

Impose phase
constraint

6) Impose Fourier
constraint

 𝑋𝑖

 𝑋𝑖

Fig. 4: Flowchart of the proposed algorithm based on Ayers-
Dainty method. PES-TV stands for Projection onto the Epi-
graph Set of TV function.

V. EXPERIMENTAL RESULTS

We first start with the example given in ”http://www.optinav.
com/Iterative-Deconvolution.htm” [47], which is linked by
the EPFL 3D Deconvolution in microscopy web-page ”http:
//bigwww.epfl.ch/deconvolution/?p=bio”. In Figure 5, the orig-
inal image is shown in part (a). The blurred image with a
Gaussian with σ = 6 is shown in Fig. 5(b). This image has
a PSNR = 24.05dB. The image deblurred using the non-blind
method in [47] is shown in Figure 5(c), PSNR = 22.43dB. We
downloaded the restored image from [47]. The relatively low
PSNR value may be due to a shift of pixels. The restoration
result of ordinary Ayers-Dainty algorithm is shown in Figure
5(d) with a PSNR = 24.86dB. The restoration result of the
Ayers-Dainty method with phase information has a higher
PSNR = 24.91dB (Fig. 5(e)). The white cable or stripe on
the ground is barely visible. This cable is not visible in
Figures 5(b)-(d). Result of the Ayers-Dainty method and ESTV
projection is shown in Figure 5(f) with PSNR = 24.74dB.
The restoration result of Ayers-Dainty method with phase
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and ESTV projections is shown in Figure 5(g) with PSNR
= 25.18dB. This is a sharp image but there are some ringing
artifacts. In Figure 5(h) the restoration result of a non-blind
deconvolution method using the phase only iterations is shown.
This has a low PSNR = 24.58dB because the method did not
produce a good result on the sky but it is the only image
clearly showing the white cable or stripe on the ground and
the two antennas are clearly visible.

In the next set of examples we present 3D examples. We
combined two z-stack images to obtain a deconvolved image
with clear features. The image shown in Figure 6(c) is the
result of a 3D edge enhancement algorithm together with FT
phase and ESTV projections. The first image, xf shown in
Figure 6(a) is obtained by focusing the Nikon ECLIPSE Ti-S
microscope. The image xg shown in Figure 6(b) is obtained
with a slight out-of focus. These are the images of Huh7,
human hepatocellular carcinoma cells (ATCC), which were
maintained in Dulbecco’s Modified Eagle’s Medium (DMEM)
(Invitrogen GIBCO), supplemented with 10% fetal bovine
serum (FBS) (Invitrogen GIBCO), 2 mM L-glutamine, 0.1
mM nonessential amino acids, 100 units/mL penicillin and
100 g/mL streptomycin at 37 oC in a humidified incubator
under 5% CO2.

Huh7 cells were stained using CD133 seeded onto cover-
slips (50000 cell/well) in 6-well plates and grown for 72 hours
until cells reached 80% confluency. Cells were fixed with
cold 4% paraformaldehyde for 30 min at room temperature
and washed with 1xPBS. For blocking cells were incubated
with 3% BSA-PBS-T(0.1%) for 90 minutes on a shaker at
room temperature. Primary antibody incubation was done
using human anti-CD133/2 (MACS cat.# 130-090-851) for
an hour as recommended by the manufacturer. Cells were
washed 3 times with 1xPBS for 5 minutes. Secondary antibody
incubation were done using Alexa-fluor 488 goat anti-mouse
IgG antibody (Invitrogen cat.# A11029, 1:1000) for an hour.
After repeating the washing step, counterstaining (DAPI) was
done using UltraCruz Mounting Medium (Santa Cruz cat.#
sc-24941).

Time-lapse images of fluorescently stained cells were taken
using Nikon ECLIPSE Ti-S inverted microscopy and NIS-
Elements software. CD133 positive cell time-lapse images
were taken using the 465-495 nm (green) filter (duration: 1
minute, interval: 1 sec) under 600 ms exposure, whereas cell
nucleus images were taken using 340-380 nm (blue) filter
(duration: 1 minute, interval: 1 sec) under 150 ms exposure.

The Gaussian filter based edge enhancement is achieved
using the following equation:

xe = xf + ch(xg–h ∗ xg) (20)

where h is a 2D Gaussian filter with σ = 5 and ch = 0.3
is the high frequency component amplification coefficient.
High frequency components of xg is added onto the better
focused image xf . After this step the edge-enhanced image
xe is successively projected onto the phase and ESTV sets
in an iterative manner. The image shown in Figure 6(c) is
obtained after 100 iterations. Obviously, we cannot present
PSNR values but the image shown in 6(c) has clearer features

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5: (a) Example test image in [47], (b) Gaussian blurred
image with sigma= 6 with PSNR = 24.05 dB. (c) The image
deblurred by the method in [47]; PSNR = 22.43 dB, (d) Result
of the Ayers-Dainty algorithm; PSNR = 24.86 dB, (e) Result of
the Ayers-Dainty and phase information; PSNR = 24.91 dB,
(f) Ayers-Dainty and ESTV projection; PSNR = 24.74 dB,
(g) Ayers-Dainty with phase and ESTV projections; PSNR =
25.18 dB. This is a sharp image but there are some ringing
artifacts. (h) The restoration result of the non-blind approach
based on phase only iterations; PSNR = 24.58 dB. This is the
only image clearly showing the white cable or stripe on the
ground and the two antennas are clearly visible.

compared to 6(a). After 100 iterations we did not observe any
improvements in 6(c).

In Figure 7 another restoration example is shown. In Figure
8 a third restoration example is shown. Clearly, axial informa-
tion positively contributed to the debluring process in Figures
6, 7 and 8.
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(a)

(b)

(c)

Fig. 6: (a) The image obtained with best possible focus: xf
and (b) another image with slight out of focus xg . The images
xf and xg are combined to obtain (c) the deblurred image
using Gaussian filtering based edge-enhancement together
with phase and ESTV projections.

The contribution of phase and ESTV sets to a blind decon-
volution problem is also evaluated using different fluorescence
(FL) microscopy images obtained at Bilkent University as a
part of a project funded by Turkish Scientific Research Council
and German BMBF to track the motility and migration of
cells. The contact inhibition phenomena as a result of cell
migration was first described in 1950s [48] in cultured cells
which indicated that cell migration and motility are under
the control of cell signaling. Cell migration and motility is
a cellular activity that occurs during various stages of the
life cycle of a cell under normal or pathological conditions.
Embryonic development, wound-tissue healing, inflammation,
angiogenesis, cancer metastasis are some of the major cellular
activities that involve cell motility.

We used a video object tracker to track cells in our research.
But the performance was very poor because the FL cell images
were very smooth. Therefore we decided to develop a blind
deconvolution method to obtain sharp cell images. After blind
deconvolution, cells have clear features and sharper edges
which can be used by video object trackers to track the motility

(a)

(b)

(c)

Fig. 7: The image obtained with best possible focus: xf and
(b) another image with slight out of focus xg . The images
xf and xg are combined to obtain (c) the deblurred image
using Gaussian filtering based edge-enhancement together
with phase and ESTV projections.

of individual cells. In this application we do not have the z-
stack images. We only have a slice of the FL image stack.
The deconvolution operation is performed only the current
image slice. The 2D image sequence is obtained using upright
fluorescence microscope Nikon Eclipse 50i. We did not use
its widefield mode but this microscope can be also used in
widefield mode.

In order to evaluate PSNR we selected relatively sharp cell
images from FL images and we synthetically blurred them
using a 20× 20 Gaussian filter with σ = 5. We also visually
checked the results of our algorithm on naturally blurred
images. We tested proposed method against blind Ayers-
Dainty [30] to observe the improvement. In Ayers-Dainty
based methods, we started by an impulse image in which only
one component was nonzero, as the initial guess. This way
we ensured that all the frequency components would have
a nonzero magnitude value. Furthermore we compared our
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(a)

(b)

(c)

Fig. 8: The image obtained with best possible focus: xf and
(b) another image with slight out of focus xg . The images
xf and xg are combined to obtain (c) the deblurred image
using Gaussian filtering based edge-enhancement together
with phase and ESTV projections.

method with another blind deconvolution method proposed in
[16], which achieve deblurring by minimizing a regularization
cost. Unfortunately, this method did not produce successful
results in FL images.

In Fig 9, some sample images are shown that are used in
experimental studies. Ayers-Dainty method is compared with
its own extension using FT phase and ESTV sets.

For Ayers-Dainty based methods, we limited the number
of iterations to 300 and stopped the iterations when the
estimation difference of consecutive iterations became smaller
than a prescribed threshold. We have the results of standard
Ayers-Dainty method [30], Ayers-Dainty and ESTV set, Ayers-
Dainty and phase set, and the proposed Ayers-Dainty with
phase and ESTV sets. The comparison of the PSNR perfor-
mances of these algorithms is given in Table I.

We also used blind deconvolution method proposed in [16]

(a) (b)

(c) (d)

Fig. 9: Sample fluorescence microscopic images used in ex-
periments (a) Im-1, (b) Im-2 (c) Im-3, and (d) Im-4.

to deblur FL microscopy images as shown in Table I. The
PSNR performance of this algorithm is not as good as the
Ayers-Dainty method. Image deblurring results for ”im-7” is
shown in Figure 10.

The bold PSNR values are the best results for a given
image. We observed that best blind deconvolution results
are obtained with Ayers-Dainty method using phase and
ESTV set in general in our FL image test set. The method
described in [16] cannot improve fine details of FL im-
ages as shown in Figure 10 and Table I. In the follow-
ing web-page you may find the MATLAB code of projec-
tions onto Cφ and CESTV and example FL images which
four of them are shown in Fig. 9. We have the Matlab
source codes together with more examples in our web-page:
http://signal.ee.bilkent.edu.tr/BlindDeconvolution.html.

In another set of experiments, we used the FL image shown
in Fig. 11a which is blurred by an unknown filter or captured
with a focus blur [49]. This image is deblurred using the
blind deconvolution by phase information and its output is
compared with Ayers and Dainty’s and Xu et al’s algorithm
[7]. The deblurred image using the blind deconvolution by
phase information and CESTV, Ayers and Dainty’s algorithm,
and the Xu et al’s algorithm are shown in Fig. 11b, 11c, and
11d, respectively.

Ayers and Dainty’s method sometimes does not converge as
shown in Fig. 11c. Xu et al’s algorithm also diverges when
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TABLE I: Deconvolution results for FL microscopic images blurred by a Gaussian filter with disc size 20 and σ = 5. PSNR
(dB) values are reported.

Image Initial
PSNR

Ayers-
Dainty

Ayers-Dainty
with Phase

Ayers Dainty
with ESTV

Ayers Dainty
Phase&ESTV

Method
in [16]

im-1 32.08 34.25 34.51 34.56 35.19 31.43
im-2 31.86 31.59 31.81 32.67 32.13 31.17
im-3 32.62 33.24 33.10 34.31 33.57 30.59
im-4 33.75 31.78 31.58 30.92 29.78 33.85
im-5 35.66 37.51 35.86 37.82 36.08 34.10
im-6 33.37 36.21 35.89 36.46 36.15 32.59
im-7 35.03 38.76 38.53 39.70 40.24 32.32
im-8 34.64 38.33 37.72 39.26 38.27 32.71
im-9 31.14 31.86 31.55 32.12 32.08 32.71
im-10 33.48 36.81 36.84 37.56 38.22 32.16
im-11 35.17 35.50 38.57 35.43 39.65 34.63
im-12 34.64 30.68 34.87 32.65 36.74 34.82
im-13 35.35 36.52 38.00 37.05 39.10 32.26
im-14 36.44 36.41 37.84 36.98 38.57 33.32

we select “default” option. It does not diverge when we select
“small” kernel option but the result is far from perfect as
shown in Fig. 11. The blue channel has clear artifacts. Sets Cφ
and CESTV can be also incorporated into Xu et al’s method for
symmetric kernels but we do not have an access to the source
code. We get the best results when we use Cφ and CESTV in
a successive manner as shown in Fig. 11b.

VI. CONCLUSION

Both FT phase and the epigraph set of the TV function
are closed and convex sets. They can be used as a part
of iterative microscopic image deblurring algorithms because
blurring functions can be assumed to be symmetric in x-y
plane. Both sets not only provide additional information about
the desired solution but they also stabilize the deconvolution
algorithms. It is experimentally observed that phase and ESTV
sets significantly improve the blind deblurring results of Ayers
and Dainty’s method in FL microscopy images. They can also
be used as a part of non-blind deconvolution methods as well.
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bottom right corner.
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(a) (b)

(c) (d)

Fig. 11: The deconvolution results for FL image downloaded from [http://bigwww.epfl.ch/algorithms/mltldeconvolution/] (a)
blurred image, (b) deblurred by the blind deconvolution using phase information (the images and the codes are provided in
http://signal.ee.bilkent.edu.tr/BlindDeconvolution.html), (c) deblurred by Ayers and Dainty’s algorithm, and (d) Deblurred by
Xu et al’s algorithm [7], which has clear artifacts in blue channels.
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